Precision luminosity measurement at the CMS experiment in Run 2 and prospects for HL-LHC

Attila Rádl

Luminosity

• Luminosity: connection between the event rate and the cross section

 $dN/dt = L_{inst} \sigma_{p}$

• Time integrated: represents the amount of data recorded

 $L = \int L_{inst} dt$

• Number of interesting events in a sample

N = L σ_{p}

https://twiki.cern.ch/twiki/bin/view/CMSPublic/LumiPublicResults

Luminosity for colliding beams

- Precise measurement of absolute luminosity
- Luminosity for two "head-on" colliding bunches
 - Measured properties: proton density function, number of protons in the bunches
 - Effective area: beam overlap integral

$$\mathcal{L}_{inst}^{i} = N_{1}^{i}N_{2}^{i}f \int \rho_{1}(x,y)\rho_{2}(x,y)dxdy = N_{1}^{i}N_{2}^{i}f \int \rho_{x1}(x)\rho_{x2}(x)dx \int \rho_{y1}(y)\rho_{y2}(y)dy$$
Assumption: x-y direction factorization

No precise, direct measurement for $\rho_i(x)$

Scan the beam profile: Van der Meer method

Van der Meer methodology

• Separate the two beams and measure the rate continuously

$$\int \rho_{x1}(x)\rho_{x2}(x)dx = \frac{R_x(0)}{\int R_x(\Delta)d\Delta} = \sqrt{2\pi} \Sigma_x$$

- Event rate from luminometers
- Beam orbit monitoring with Beam Position Monitors (BPM)

$$\mathcal{L}_{\text{inst}}^{i} = \frac{N_{1}^{i} N_{2}^{i} f}{2\pi \Sigma_{x} \Sigma_{y}}$$

BRIL

Van der Meer methodology

Separate the two beams and measure the rate continuously

Van der Meer methodology

Separate the two beams and measure the rate continuously

$$\int \rho_{x1}(x)\rho_{x2}(x)dx = \frac{R_x(0)}{\int R_x(\Delta)d\Delta} = \sqrt{2\pi} \Sigma_x$$

- Event rate from luminometers
- Beam orbit monitoring with Beam Position Monitors (BPM)

Expectation: same visible cross-section for regular conditions

$$\tau_{\rm vis} = \frac{2\pi\Sigma_x \Sigma_y R_0}{N_1^i N_2^i f}$$

Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

Muon barrel drift tubes

- Counting muon track stubs
- No bunch-by-bunch resolution during Run 2
 - Used for linearity and stability
 - cross-checks
- "40 MHz Scouting" during Run 3
 - Readout level-1 trigger objects with 40

MHz (irrespective of trigger decision)

• Reduced event size is needed

• Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

Pixel Luminosity Telescope (PLT)

• Pixel planes in a telescope

arrangement

- Phase-0 pixel sensors
- \circ Run 3: rebuilt PLT, one

telescope equipped with

Phase-2 sensor prototypes

- Counting triple-coincidences
- Real-time, bunch-by-bunch

luminosity calculations

Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

Fast Beam Condition Monitor (BCM1F):

- Silicon and diamond sensors mounted on a C-shape holder (48 altogether)
 - Run 3: fully equipped with silicon

sensors. Active cooling and Phase-2

prototypes

- Hit counting
- Machine induced background
 - measurements
- Real-time, bunch-by-bunch lumi

Requirement: linear signal-luminosity dependency or measuring and correcting non-linearity

Beam quality and position monitors

- Beam position monitors (BPM) to measure the orbit of the circulating beams, based on image charges
 - Diode ORbit and OScillation (DOROS) detectors
 - Arc BPM detectors
- Beam current detectors
 - DC Current Transformers (DDCT)
 - Fast Beam Current Transformers (FBCT)
- Measuring ghost and satellites
 - LHC Longitudinal Density Monitor (LDM)
 - LHCb Beam-Gas Imaging (BGI) using VELO

14

VdM fill at CMS

- Emittance scan
 - \circ ±2 $\sigma_{\rm b}$ maximal displacement in each direction
- Ordinary VdM scan
 - \circ ±3 σ_{h} maximal displacement in each direction
- Offset scan
 - \circ VdM, but ±1.5 σ_{h} transverse displacement
- Beam imaging scan
 - $\circ~\pm 4.5~\sigma_{_{b}}$ maximal displacement with one scanning beam
- Constant length-scale
 - \circ 1.4 $\sigma_{\rm b}$ separation kept for several positions
- Variable length-scale
 - Mini-scans with 3 steps (-1.25 σ_{b} , 0, 1.25 σ_{b} separation) for several positions

VdM calibration

Collision rates measured as a function of the beam separation

BRIL

 χ^2 / ndf

23.95/22

VdM (normalization) corrections I

- Charge current per bunch, corrected for ghosts and satellites
- Linear and residual orbit drift corrections: from interpolation between measured head-on positions and positions per step during scans
- Length scale: correction of the nominal beam positions to use the CMS length scale extracted from vertex positions

VdM (normalization) corrections II

- Beam-beam effects: electromagnetic interaction between the two beams leads to an optical distortion effect on the bunch shapes (dynamic beta) and a deflection from the nominal position
- Background subtraction (luminometer specific): intrinsic noise measured for empty bunch crossings or using super separation scans (6 σ_b separation in both directions)
- Not completely independent x and y bunch proton density function, calculated from specific separation scans (imaging, offset and diagonal) or by studying the luminous region
 parameters in standard VdM scans

[mu] nd

Luminosity under physics conditions

Corrections for data-taking (integration)

- Out-of-time corrections (more filled bunches arriving in trains during data-taking)
 - type-1: effect on the next bunch crossing
 - type-2: late hits, nuclear excitations, etc
 - exponential time development
- Efficiency, noise and non-linearity corrections: reduced response due to irradiation, ageing or other detector specific effect. Emittance scans recorded during physics runs since 2017
- Cross-detector stability and residual non-linearities: long-term comparison of the measured luminosities

					CMS/ PULL	BRII
Uncertainties in Run 2		Systematic	Uncertainty Run 2 (%) preliminary	Uncertainty in 2016 (%)	Camaat	
Uncertainty on the $\sigma_{_{vis}}$ estimations (VdM)	Normalization	Length scale	0.2–0.3	0.2		
		Linear orbit drift	0.1–0.2	0.1		
		Residual orbit drift	0.5–0.8	0.5		
		x-y nonfactorization	0.5–0.8	0.5		
		Beam-beam deflection	0.5	0.5		
		Dynamic-β				
		Beam current calibration	0.2	0.2		
		Ghosts and satellites	0.1	0.1		
		Scan to scan variation	0.3–0.5	0.3		
		Bunch to bunch variation	0.1	0.1		
		Cross-detector consistency	0.5–0.6	0.5		
		Background (detector specific)	0.1	0.1		
Coming from the extrapolation of the calibration to high pileup conditions, and from the stability of the measurements (data-taking)	Integration	Out-of-time effects (detector specific)	0.3–0.4	0.3		
		Cross-detector stability	0.5–0.6	0.5		
		Linearity	0.3–1.5	0.3		
		CMS deadtime	< 0.1	< 0.1	High-Luminosity	ity LHC
		Total	1.2–2.5	1.2	expectations: systematic un	~1% total certainty

High-Luminosity LHC

- Future of the LHC and the corresponding experiments
 - Plan for Phase-2: more than 4000 fb⁻¹
 - \circ Collected data so far: ~210 fb⁻¹
- Running with different conditions
 - Run-2 peak: $2x10^{34}$ cm⁻²s⁻¹ pileup ~50
 - Expected peak luminosity in HL-LHC:

7.5x10³⁴ cm⁻²s⁻¹, pileup of ~200

• Upgraded or completely replaced systems

Luminosity precision requirements

- Luminosity uncertainty: huge fraction of the overall experimental uncertainties
- Goals: sufficiently accurate
 - Online measurements: ~5% uncertainty in all conditions (reach ~2% for HL-LHC)
 - monitoring the LHC running conditions
 - Offline integrated luminosity per data-taking period: ~2.5% preliminary, best final in 2016 pp: 1.2% (reach 1% for HL-LHC)

comparable to other experimental uncertainties

Instruments for Phase-2 luminosity

- Exploitation of the available sub-detector systems
 - \circ Online bunch-by-bunch readout if feasible
- New tracking detector system
 - Inner Tracker Endcap Pixel Detector (TEPX): online pixel cluster counting
 - TEPX Disk 4 Ring1 (D4R1): exclusively for lumi and beam-induced background measurements
 - Outer Tracker Layer 6 (OT L6): counting track stubs (coincidences)
- Extended access to the trigger primitives with 40 MHz frequency (scouting): muons, tracks, calorimeter objects
- Muon barrel: extended bunch-by-bunch resolution
- Fast Beam Condition Monitor: completely new standalone luminometer
 - \circ Asynchronous timing: sub-BX time resolution
 - \circ Measurements during the full LHC filling cycle
 - \circ No significant degradation due to irradiation and ageing

Overview

- Precise luminosity measurements during Run-2
 - Reaching 1.2% precision in 2016 pp@13 TeV
- Expectations for Run-3: continue understanding the dominant sources of systematics to achieve more precise luminosity calculations with partially rebuilt / upgraded detectors
 - Opportunity to test some of the Phase-2 systems: muon barrel stubs and "40 MHz Scouting" (muon candidates, potentially calorimeter observables), semi-online pixel cluster counting
- Ambitious upgrade program for Phase-2 HL-LHC: robust systems with improved linearity and constant monitoring
 - Upgraded or completely replaced instrumentation
- Better understanding of the beam parameters, sources and determination of systematics bias
- Ultimate goal in sight: luminosity measurements with ~1% total uncertainty at pileup 200

References

- CMS Collaboration, "The CMS experiment at the CERN LHC", <u>JINST 3 (2008) S08004</u>
- CMS Collaboration, "CMS Luminosity Measurement for the 2017 Data-Taking Period at 13 TeV", <u>CMS PAS LUM-17-004</u>
- CMS Collaboration, "CMS Luminosity Measurement for the 2018 Data-Taking Period at 13 TeV", <u>CMS PAS LUM-18-002</u>
- CMS Collaboration, "The Phase-2 Upgrade of the CMS Beam Radiation Instrumentation and Luminosity Detectors", CMS Technical Proposal <u>CMS-TDR-023</u>
- CMS Collaboration, "Precision luminosity measurement in proton-proton collisions at 13 TeV in 2015 and 2016 at CMS", <u>EPJC 81, 800 (2021)</u>
- CMS Collaboration, "BCM1F and Luminosity calibration", <u>CMS-DP-2018-062</u>