The scaling region of the tricritical Ising model

Máté Lencsés

Wigner RCP, Theoretical Physics Seminar
January 27, 2023

PROJECT
FINANCED FROM
THE NRDI FUND

- A. Cortes-Cubero, R. Konik, ML, G. Mussardo, G. Takács, "Duality and form factors in the thermally deformed two-dimensional tricritical Ising model", SciPost Phys. 12 (2022) 162, arXiv2109.09767
- ML, G. Mussardo, G. Takács, "Confinement in the tricritical Ising model", Phys.Lett.B 828 (2022) 137008, arXiv:2111.05360
- ML. G. Mussardo, G. Takács, "Variations on vacuum decay: The scaling Ising and tricritical Ising field theories", Phys.Rev.D 106 (2022) 10, 105003, arXiv:2208.02273
- ML, A. Miscioscia, G. Mussardo, G. Takács, "Multicriticality in Yang-Lee edge singularity", accepted by JHEP, arXiv:2211.01123

E_{8} experiment I., $\mathrm{CoNb}_{2} \mathrm{O}_{6}$

Figure 1: E_{8} experiment, Picture from Coldea et.al. Science 327 , 177 (2010); See also Zamolodchikov 1989

E_{8} experiment II., $\mathrm{BaCo}_{2} \mathrm{~V}_{2} \mathrm{O}_{8}$

Figure 2: E_{8} experiment, Picture from Zou et al. PRL 127 (2021)

Table of Contents

(1) Ising Model
(2) Tricritical Ising Model (TIM)
(3) E_{7} Form Factors
(4) Confinement in the Tricritical Ising Model
(5) False vacuum decay
(6) Multicritical Yang-Lee singularity
(7) Conclusion

Ising Model (IM)

- 2 D square lattice, $s_{i}= \pm 1$

$$
\mathcal{H}=-\tilde{J} \sum_{\langle i, j\rangle} s_{i} s_{j}
$$

- Quantum Ising model (transverse field, quantum spin chain)

$$
H(\sigma, h)=-J \sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z}-J h \sum_{i} \sigma_{i}^{x}
$$

- Z_{2} symmetry: simultaneous flip of all spins
- Quantum critical point $h=1$, ferromagnetic/paramagnetic phase
- Transverse field is related to the temperature: $h-1 \propto T-T_{c}$
- Order parameter: σ^{z}

IM: Disorder operator, Duality

- Introducing

$$
\begin{aligned}
& \mu_{i}^{z}=\prod_{j=-\infty}^{i} \sigma_{j}^{x} \\
& \mu_{i}^{x}=\sigma_{i}^{z} \sigma_{i+1}^{z}
\end{aligned}
$$

one can check that the operators $\mu^{x, z}$ satisfy the same algebra as $\sigma^{x, z}$, moreover

$$
\begin{equation*}
H(\sigma, h) \propto H\left(\mu, h^{-1}\right) \tag{1}
\end{equation*}
$$

- This is the Kramers-Wannier duality, and μ^{z} is called the disorder operator.

IM scaling limit: free fermions

- In the scaling limit: $J \rightarrow \infty, h \rightarrow 1$ with fixed

$$
M=2 J|1-h|
$$

scales to a free Majorana fermion field theory

$$
H=\int_{-\infty}^{\infty} d x \frac{1}{2 \pi}\left[\frac{i}{2}\left(\psi(x) \partial_{x} \psi(x)-\bar{\psi}(x) \partial_{x} \bar{\psi}(x)\right)-i M \bar{\psi}(x) \psi(x)\right]
$$

- The KW duality:

$$
M \rightarrow-M ; \quad \psi \rightarrow \psi ; \quad \bar{\psi} \rightarrow-\bar{\psi}
$$

- Critical point: $M=0$, massless free fermion, $\mathcal{M}_{3,4}$ minimal CFT with $c=1 / 2$ three primaries

$$
\mathbf{1}, \quad \varepsilon, \quad \sigma / \mu
$$

- Manifestation of the duality:

$$
\varepsilon \rightarrow-\varepsilon ; \quad \sigma \rightarrow \mu
$$

Ising Field Theory

- General perturbation of the Ising fixed point:

$$
\mathcal{A}=\mathcal{A}_{C F T}+\lambda \int d^{2} x \varepsilon+h_{\|} \int d^{2} x \sigma
$$

- $h_{\|}=0, \lambda>0$ Free fermion, disordered phase (1GS+pt.), $\lambda<0$ ordered phase (2GS+kinks)
- $\lambda=0 h_{\|} \neq 0$ Zamolodchikov's E_{8} integrable model
- General: non-integrable, inelastic scattering, confinement, Yang-Lee singularity:
- "Ising spectroscopy" Zamolodchikov et al. 2001, 2006, 2011, 2013, 2022

Confinement in the Ising field theory

- Ordered phase: 2-fold degenerate ground state, kink excitations of mass m_{k}
- $h_{\|} \neq 0$: explicit symmetry breaking, lifts GS degeneracy
- False vacuum: finite energy density

$$
\Delta \mathcal{E} \approx 2 h_{\|}\langle\sigma\rangle_{h_{\|}=0}
$$

- "Meson" masses in the simplest approximation: 1D linear potential McCoy, Wu 1978

$$
M_{n} \approx m_{k}\left[2+\left(\frac{\Delta \mathcal{E}}{m_{k}}\right)^{2 / 3} z_{n}\right]
$$

where $-z_{n}$ are the zeroes of the Airy function.

- There are better approximations Fonseca, Zamolodchikov 2006; Rutkevich 2017

Table of Contents

(1) Ising Model
(2) Tricritical Ising Model (TIM)
(3) E_{7} Form Factors
(4) Confinement in the Tricritical Ising Model
(5) False vacuum decay
(6) Multicritical Yang-Lee singularity
(7) Conclusion

Tricritical Ising Model (TIM): IM with vacancies

- Ising spins with vacancies

$$
\begin{aligned}
\mathcal{H}= & -J \sum_{\langle i, j\rangle}^{N} s_{i} s_{j} t_{i} t_{j}-\Omega \sum_{i=1}^{N} t_{i}-H \sum_{i=1}^{N} s_{i} t_{i} \\
& -H_{3} \sum_{\langle i, j\rangle}^{N}\left(s_{i} t_{i} t_{j}+s_{j} t_{j} t_{i}\right)-K \sum_{\langle i, j\rangle}^{N} t_{i} t_{j},
\end{aligned}
$$

where $t_{i}=0,1$ and $s_{i}= \pm 1$.

- The general phase diagram is quite complicated...
- The tricritical point is located on the $H=H_{3}=K=0 \mathrm{~J}-\Omega$ plane.

TIM Qualitative Phase Diagram

TIM: Scaling Limit, Tricritical Ising CFT

- The tricritical point is described by the $\mathcal{M}_{4,5}$ CFT minimal model, with $c=7 / 10$
- Operator content:

conformal weights	field	physical role	Landau-Ginzburg field
$(0,0)$	\mathbb{I}		identity
$\left(\frac{3}{80}, \frac{3}{80}\right)$	σ	magnetisation	Φ
$\left(\frac{1}{10}, \frac{1}{10}\right)$	ε	energy	$: \Phi^{2}:$
$\left(\frac{7}{16}, \frac{7}{16}\right)$	σ^{\prime}	submagnetisation	$: \Phi^{3}:$
$\left(\frac{3}{5}, \frac{3}{5}\right)$	t	chemical potential	$: \Phi^{4}:$
$\left(\frac{3}{2}, \frac{3}{2}\right)$	$\varepsilon^{\prime \prime}$	(irrelevant)	$: \Phi^{6}:$

Around the tricritical point

- We study the following perturbations:

$$
\mathcal{A}\left[g, h, h^{\prime}, z\right]=\mathcal{A}+g \int d^{2} x \varepsilon+h \int d^{2} x \sigma+h^{\prime} \int d^{2} x \sigma^{\prime}+z \int d^{2} x t
$$

- $\mathcal{A}[g, 0,0,0]: E_{7}$ model Christe, Mussardo 1990, Fateev, Zamolodchikov 1990
- $g>0$ Disordered phase, 1GS, 7 particles
- $g<0$ Ordered phase, 2 GS 3 kinks-antikinks, 4 bound states of them
- $\mathcal{A}[0, h, 0,0]$: non-integrable, 3 particles Lässig, Mussardo, Cardy 1991
- $\mathcal{A}\left[0,0, h^{\prime}, 0\right]$: integrable \mathcal{A}_{3} model, 2GS, kink-antikink, bound state of them Colomo, Koubek, Mussardo 1992
- $\mathcal{A}[0,0,0, z]: \mathcal{A}_{4}$, massive or massless integrable. The massive has 3-fold degenerate ground state.Reshetikin, Smirnov 1990, Bernard, Leclair 1990

Around the tricritical point: effective potential

Table of Contents

(1) Ising Model
(2) Tricritical Ising Model (TIM)
(3) E_{7} Form Factors
(4) Confinement in the Tricritical Ising Model
(5) False vacuum decay
(6) Multicritical Yang-Lee singularity
(7) Conclusion

Duality

- One can introduce the formal operator D, implementing the following duality transformation:
- The magnetisation order parameters (odd fields) change into the disorder operators:

$$
\mu=D^{-1} \sigma D, \quad \mu^{\prime}=D^{-1} \sigma^{\prime} D
$$

- Even fields transform to themselves:

$$
D^{-1} \varepsilon D=-\varepsilon, \quad D^{-1} t D=t, \quad D^{-1} \varepsilon^{\prime \prime} D=-\varepsilon^{\prime \prime}
$$

- Therefore the thermal deformation $\left(g \propto T-T_{c}\right)$

$$
\mathcal{A}=\mathcal{A}_{T I M}+g \int d^{2} \times \varepsilon(x)
$$

has a low-T/high-T duality.

TIM: Thermal deformation is the integrable E_{7} model

- The thermal deformation is an interacting integrable QFT
- It is the E_{7} Toda theory
- There are 7 stable particles, of masses m_{i}, scattering, bound state structure is known
- Z_{2} symmetry: $1,3,6$ odd, $2,4,5,7$ even particles
- High-T: unique ground state, 7 particles
- Low-T: 2-fold degenerate ground state, odd particles are kinks, even particles are bound states of them (particles on top of a ground state)

Form Factors: Matrix elements of local
 operators

- Form factors are matrix elements of local operators

$$
F_{\left\{a_{i}\right\}}^{\mathcal{O}}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right)=\langle 0| \mathcal{O}(0,0)\left|A_{a_{1}}\left(\theta_{1}\right) A_{a_{2}}\left(\theta_{2}\right) \ldots A_{a_{n}}\left(\theta_{n}\right)\right\rangle
$$

- Form Factor bootstrap equations:

$$
\begin{aligned}
\mathcal{S} F_{\{n\}} & =F_{\{n\}} \\
\mathcal{B} F_{\{n+1\}} & =F_{\{n\}} \\
\mathcal{K} F_{\{n+2\}} & =F_{\{n\}}
\end{aligned}
$$

- Solution (VEV, 1 and 2 particles):

$$
\begin{aligned}
& F_{0}=\text { const } ; \quad F_{a}(\theta)=\text { const } ; \\
& F_{a b}\left(\theta_{1}, \theta_{2}\right)=\frac{Q_{a b}\left(\theta_{1}-\theta_{2}\right)}{D_{a b}\left(\theta_{1}-\theta_{2}\right)} F_{a b}^{\min }\left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

- F_{0} are known Fateev, Lukyanov, Zamolodchikov, Zamolodchikov 1998, $D_{a b}, F_{a b}$ are fixed by scattering data, we are looking for Q
- Cortés Cubero, Konik, ML, Mussardo, Takacs SciPost Phys. 12 (2022)

FF: Asymtotics

- Q is given as

$$
Q_{a b}(\theta)=\sum_{i=0}^{N_{a b}} a_{a, b}^{k} \cosh ^{k} \theta
$$

- OK, but which operator?
- If the conformal dimension of the operator is $\Delta_{\mathcal{O}}$, then

$$
\lim _{\left|\theta_{i}\right| \rightarrow \infty} F_{a_{1}, \ldots, a_{n}}^{\mathcal{O}}\left(\theta_{1}, \ldots, \theta_{n}\right) \sim e^{y_{\mathcal{O}}\left|\theta_{i}\right|}
$$

where $y_{\mathcal{O}} \leq \Delta_{\mathcal{O}}$, fixes $N_{a b}$

- This is usually enough, but in TIM gives the same for $N_{a b}$ for σ / μ and $\sigma^{\prime} / \mu^{\prime}!!$
- Bootstrap eqs. lead to an incomplete set of equations for F_{i} and $a!!$

FF eqs. for σ / σ^{\prime}

$$
F_{6}^{\Phi}=0.115722 F_{1}^{\Phi}+0.587743 F_{3}^{\Phi}
$$

$$
F_{12}: \quad a_{12}^{0}=3.06131 F_{1}^{\Phi}-19.8715 F_{3}^{\Phi}
$$

$$
a_{12}^{1}=-8.95069 F_{1}^{\Phi}-30.9146 F_{3}^{\phi}
$$

$$
F_{14}: \quad a_{14}^{0}=-160.899 F_{1}^{\Phi}-1600.15 F_{3}^{\phi}
$$

$$
a_{14}^{1-}=-626.504 F_{1}^{\Phi}-3040.25 F_{3}^{\Phi}
$$

$$
a_{14}^{2}=-456.311 F_{1}^{\Phi}-1437.25 F_{3}^{\phi}
$$

$F_{15}: \quad a_{15}^{0}=32.1365 F_{1}^{\phi}+177.579 F_{3}^{\phi}$

$$
a_{15}^{1}=70.7301 F_{1}^{\oplus}+289.789 F_{3}^{\oplus}
$$

$$
a_{15}^{2}=37.5681 F_{1}^{\Phi}+114.447 F_{3}^{\Phi}
$$

$F_{32}: \quad a_{23}^{0}=-38.6198 F_{1}^{\phi}-337.751 F_{3}^{\phi}$
$a_{23}^{1}=-142.958 F_{1}^{\Phi}-621.037 F_{3}^{\phi}$
$a_{23}^{2}=-87.8337 F_{1}^{\Phi}-266.777 F_{3}^{\Phi}$
$F_{34}: \quad a_{34}^{0}=-493.626 F_{1}^{\Phi}-2722.44 F_{3}^{\Phi}$
$a_{34}^{1}=-1617.98 F_{1}^{\Phi}-6682.94 F_{3}^{\Phi}$
$a_{34}^{2}=-1495.64 F_{1}^{\Phi}-5104.39 F_{3}^{\Phi}$
$a_{34}^{3}=-399.244 F_{1}^{\Phi}-1174.92 F_{3}^{\Phi}$

FF: Duality, Clustering

- High-T: $\sigma / \sigma^{\prime}: Z_{2}$ odd, $\mu / \mu^{\prime}: Z_{2}$ even
- One can exploit the duality:

$$
\begin{equation*}
\lim _{\theta \rightarrow \infty} F_{i j}^{\Phi}(\theta)=\frac{\omega_{i j}}{F_{0}^{\Phi}}\left(F_{i}^{\Phi} F_{j}^{\Phi}\right) \tag{2}
\end{equation*}
$$

where odd FFs correspond to σ / σ^{\prime} even ones correspond to μ / μ^{\prime}

- For example:

$$
0.851179-2.97692 \frac{F_{2}^{\phi}}{F_{0}^{\phi}}=\omega_{22}\left(\frac{F_{2}^{\phi}}{F_{0}^{\Phi}}\right)^{2}
$$

- $\omega_{22}= \pm 1$, turns out that $\omega_{22}=-1$ is consistent with the, Δ-theorem, and the two solutions tell the two operators apart, other clustering eqs. fix all the one-particle form factors.

Check 1: Δ-theorem

- The Δ-theorem Delino, Simonetti, Cardy 1996 gives the the UV-conformal weight of an operator:

$$
\Delta_{\Phi}^{\mathrm{uv}}=-\frac{1}{2\langle\Phi\rangle} \int_{0}^{\infty} d r r\langle\Theta(r) \Phi(0)\rangle
$$

- Inserting a complete set and truncating to the 1 and 2 particle contributions that we calculated lead to ${ }^{1}$:

	sum	exact
μ	0.0367	0.0375
μ^{\prime}	0.3824	0.4375

[^0]
Check 2: Truncated Conformal Space

- The Hamiltonian:

$$
H=H_{C F T}+V
$$

- Diagonalize H using $\mathcal{H}_{C F T}$ as a basis (matrix elements of V can be calculated)
- Finite volume $=$ discrete spectrum, truncation $=$ finite matrix
- Identify the ground state, 1- and 2-particle states, and calculate matrix elements
- Relate finite-volume form factors to infinite volume ones Pozsgay,

Takács 2008

- Duality: σ / σ^{\prime} in low- \mathbf{T} is μ / μ^{\prime} in high-T!!

Check 2: Truncated Conformal Space

Table of Contents

(1) Ising Model
(2) Tricritical Ising Model (TIM)
(3) E_{7} Form Factors
(4) Confinement in the Tricritical Ising Model
(5) False vacuum decay
(6) Multicritical Yang-Lee singularity
(7) Conclusion

Around the tricritical point: effective potential

Confinement of kinks I.: E_{7}

- There is a false vacuum, with finite energy density, $\Delta \mathcal{E}$ where

$$
\Delta \mathcal{E}=2 h\langle\sigma\rangle
$$

for σ, and

$$
\Delta \mathcal{E}=2 h^{\prime}\left\langle\sigma^{\prime}\right\rangle
$$

for σ^{\prime} perturbation

- Kinks-antikinks are confined due to a linear potential
- Semi-classical approximation: two kinks in linear potential

$$
\left[2 \omega(\hat{p})-E_{n}+\Delta \mathcal{E}|x|\right] \phi_{n}^{+}(x)=0 \quad, \quad \hat{p}=-i \partial_{x},
$$

for identical kinks, and

$$
\left(\omega_{a}(p)+\omega_{b}(p)-E_{n}+\Delta \mathcal{E}|x|\right) \phi_{n}^{+}(x)=0
$$

for non-identical kinks. $\omega_{a}(p)=\sqrt{m_{a}^{2}+p^{2}}$

Confinement of kinks I.: E_{7}

- Solution can be given using saddle point, leading to the quantization conditions:

$$
\sinh 2 \theta_{n}-2 \theta_{n}=\frac{\Delta \mathcal{E}}{m^{2}}\left[2 \pi\left(n+\frac{1}{4}\right)+i \log S\left(2 \theta_{n}\right)\right]
$$

for identical, and

$$
\begin{aligned}
& m_{a}^{2}\left(\frac{1}{2} \sinh 2 \theta_{n}-\theta_{n}\right)-m_{b}^{2}\left(\frac{1}{2} \sinh 2 \tilde{\theta}_{n}-\tilde{\theta}_{n}\right) \\
& =\Delta \mathcal{E}\left[2 \pi\left(\frac{n}{2}+\frac{1}{4}\right)+i \log S_{a b}\left(\theta_{n}-\tilde{\theta}_{n}\right)\right] \\
& \text { where } \tilde{\theta}_{n}=-\sinh ^{-1}\left(\frac{m_{a} \sinh \theta_{n}}{m_{b}}\right)
\end{aligned}
$$

for non-identical kink-antikink pairs The mass is given by

$$
M_{n}=2 m \cosh \theta_{n} \quad M_{n}=m_{a} \cosh \theta_{n}+m_{b} \cosh \tilde{\theta}_{n}
$$

- Expected to work better for larger n

E_{7} Confinement: comparison to TCSA

Figure 3: Meson masses in magnetic perturbations of the E_{7} model. $\zeta_{1}=\Delta \mathcal{E} / m_{1}^{2}$
ML, Mussardo, Takács, Phys.Lett.B 828 (2022)

Around the tricritical point: effective potential

Confinement of kinks II.: \mathcal{A}_{3} model

- Kink structure

- Non-diagonal scattering:

$$
\begin{aligned}
& \widetilde{K}_{01} \widetilde{K}_{10} \rightarrow \widetilde{K}_{01} \widetilde{K}_{10} \\
& \widetilde{K}_{10} \widetilde{K}_{01} \rightarrow \widetilde{K}_{10} \widetilde{K}_{01}+\widetilde{K}_{11} \widetilde{K}_{11}
\end{aligned}
$$

- The energy density of the false vacuum

$$
\widetilde{\Delta \mathcal{E}}=\left|g\left(\langle\varepsilon\rangle_{1}-\langle\varepsilon\rangle_{0}\right)\right|
$$

- Confinement is expected only when 1 is lifted up, $g<0$ (this is verified by TCSA)
- Semi-classics can be used here as well

\mathcal{A}_{3} Confinement: comparison to TCSA

Figure 4: Meson masses in the thermal perturbation of the \mathcal{A}_{3} model. $\zeta_{2}=\widetilde{\Delta \mathcal{E}} / m_{K}^{2}, \eta=\left|h^{\prime}\right|^{9 / 5} /\left(\left|h^{\prime}\right|^{9 / 5}+|g|^{9 / 8}\right)$
ML, Mussardo, Takács, Phys.Lett.B 828 (2022)

Table of Contents

(1) Ising Model
(2) Tricritical Ising Model (TIM)
(3) E_{7} Form Factors
(4) Confinement in the Tricritical Ising Model
(5) False vacuum decay
(6) Multicritical Yang-Lee singularity
(7) Conclusion

Around the tricritical point: effective potential

Fate of the false vacuum as a quantum quench

- On spin chains: Lagnese, Surace, Kormos, Calabrese, 2021
- Consider a model with degenerate ground states
- Introduce a perturbation which unbalances them
- Pick the true vacuum state as an initial state
- Time evolve it with a Hamiltonian which unbalances in the other way
- E.g. Ising model in the ordered phase, $h_{\|} \rightarrow-h_{\|}$
- Expectation for time evolution of operators

$$
f^{\mathcal{O}}(t)=\frac{\langle\mathcal{O}(t)\rangle+\langle\mathcal{O}(0)\rangle}{2\langle\mathcal{O}(0)\rangle} \propto e^{-\gamma V t}
$$

where

$$
\gamma=\mathcal{C} \Delta \mathcal{E} \exp \left[-\frac{\pi M^{2}}{\Delta \mathcal{E}}\right]
$$

Realization in the Ising model

Ising model in the ferromagnetic phase with longitudinal magnetic field

Figure 5: Time evolution and decay rate in the Ising model with magnetic field. ML, Mussardo, Takács, PRD 106 (2022); see also Szász-Schagrin, Takács, 2022

Decay in the tricritical Ising model

Figure 6: Effective potential changes in various quenches $\left(E_{7}, \mathcal{A}_{3}, \mathcal{A}_{4}\right)$

- From the E_{7} model, we found that large oscillations dominate
- From \mathcal{A}_{3} depending on the sign of the coupling: visible or large oscillaitons
- From \mathcal{A}_{4} : with magnetic field: oscillations, with ε, visible
- Oscillations correspond to particles above the false vacuum!

Decay rates in the tricritical Ising model

Figure 7: Decay rates in different quenches (\mathcal{A} to para, \mathcal{A}_{4} from anti-symmetric/symmteric)

Table of Contents

(1) Ising Model
(2) Tricritical Ising Model (TIM)
(3) E_{7} Form Factors
(4) Confinement in the Tricritical Ising Model
(5) False vacuum decay
(6) Multicritical Yang-Lee singularity
(7) Conclusion

Yang-Lee singularity: Ising model

- 2D Ising model

$$
H=-J \sum_{\langle i, j\rangle} s_{i} s_{j}+h \sum_{i} s_{i} ; \quad s_{i}= \pm 1
$$

- Let $z=e^{-\beta h}=e^{i \theta}$, then the zeroes of the partition function $Z(z)$ are located on the unit circle Lee, Yang 1952.

$T>T_{c}$

$$
T=T_{c}
$$

$T<T_{c}$

- $T<T_{c}$: density of zeroes is anomalous Kortmann, Grifith 1971:

$$
\eta(\theta) \stackrel{\theta \rightarrow \theta_{0}}{\sim}\left|\theta-\theta_{0}\right|^{\mu}
$$

Yang-Lee singularity: Ising model

- Fisher, 1978

$$
\mathcal{L}_{Y L}=\frac{1}{2} \partial_{\mu} \varphi \partial^{\mu} \varphi+\left(h-i h_{c}\right) \varphi+i \gamma \varphi^{3}+\ldots
$$

- Card, 19850 Non-unitary minimal conformal field theory $\mathcal{M}(2,5), c_{\text {eff }}=2 / 5$

$$
\{\mathbb{I}, \phi\} ; \quad \phi \times \phi=\mathbb{I}+\phi
$$

- Ising model in imaginary magnetic field, spontaneously broken PT symmetry Fonseca, Zamolodchikov 2001, Xu, Zamolodchikov 2022

Tricritical point

- $\mathcal{M}(4,5)$ unitary minimal model
- 2 nontrivial relavant even fields: ϵ, t
- 2 odd fields: σ, σ^{\prime}

Results from truncated space: Ising model

 We tune the imaginary magnetic field with fixed ϵ coupling, in finite volume.

Lesson from $z=0$

Figure 8: Sketch of the $z=0$ section of the phase diagram. ζ / ζ^{\prime} are dimensionless couplings of the leading/subleading magnetization.

One has to tune z to locate the tricritical point!

Results from truncated space: Tricritical Ising model

Critical YL: $\mathcal{M}(2,5)$; Tricritical $\mathrm{YL}: \mathcal{M}(2,7)$ see also von Gehlen 1994

Table of Contents

(1) Ising Model
(2) Tricritical Ising Model (TIM)
(3) E_{7} Form Factors
(4) Confinement in the Tricritical Ising Model
(5) False vacuum decay
(6) Multicritical Yang-Lee singularity
(7) Conclusion

Conclusion

- E_{7} magnetic form factors
- Tricritical Ising model has a low-T/high-T duality
- Form factor bootstrap for order/disorder operators is ambiguous
- Duality, clustering property and the Δ-theorem fix the ambiguity
- Confinement
- Confinement of non-identical kinks
- Confinement induced by thermal field
- \mathcal{A}_{3} semi-classic meson quantization works surprisingly well
- False vacuum decay: TCSA results are consistent with theory for the decay rate; the decay is obscured by oscillations when there are particles above the false vaccum
- Proposal: Multicritical Yang-Lee: $\mathcal{M}(p, p+1)+$ imaginary coupled odd fields \longrightarrow multicritical surface $\mathcal{M}(2,2 n+3)$, where $1<n<p-1$

[^0]: ${ }^{1}$ Form factors of Θ are known Acerbi, Valleriani, Mussardo 1996

