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Figure 2: Eg experiment, Picture from Zou et al. PRL 127 (2021)
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Ising Model (IM)

2D square lattice, s; = +1
H = —jz 5iSj
(i)
Quantum Ising model (transverse field, quantum spin chain)

H(o, h) —JZJ 0Fq — tha

Z> symmetry: simultaneous flip of all spins

Quantum critical point h = 1, ferromagnetic/paramagnetic
phase

Transverse field is related to the temperature: h—1oc T — T,

Order parameter: %



IM: Disorder operator, Duality

® Introducing

i
V4 _ X
Hi = H 9j

j==o0

X I z__Z
i = 0;0i41

one can check that the operators 1 satisfy the same algebra
as 0%, moreover

H(o, h) oc H(u, h™1) (1)

® This is the Kramers—Wannier duality, and p* is called the
disorder operator.



IM scaling limit: free fermions
In the scaling limit: J — oo, h — 1 with fixed

M =2J|1— h|
scales to a free Majorana fermion field theory
[e§) 1 . _ B s
H= /_oo dx% [; (V(x)Oxth(x) — V(x)Dxth(x)) — iMp(x)1p(x)
The KW duality:
M= =M, =y 9

Critical point: M = 0, massless free fermion, M3 4 minimal
CFT with ¢ = 1/2 three primaries

1, ¢ o/u
Manifestation of the duality:

E—=—€ Oo—=LU



Ising Field Theory

General perturbation of the Ising fixed point:
A=Acrr + A / d’xe + hy /d2xa

hj =0, A > 0 Free fermion, disordered phase (1GS+pt.),
A < 0 ordered phase (2GS+kinks)

A =0 h # 0 Zamolodchikov's Eg integrable model

General: non-integrable, inelastic scattering, confinement,
Yang—Lee singularity:
" Ising spectroscopy” Zamolodchikov et al. 2001, 2006, 2011, 2013, 2022



Confinement in the Ising field theory

Ordered phase: 2-fold degenerate ground state, kink
excitations of mass my

h) # 0: explicit symmetry breaking, lifts GS degeneracy
False vacuum: finite energy density

"Meson” masses in the simplest approximation: 1D linear

potential mccoy, wu 1978
AE 2/3
2+ ( > Zn
my

where —z, are the zeroes of the Airy function.
There are better approximations Fonseca, Zamolodchikov 2006; Rutkevich 2017

M,,%mk
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Tricritical Ising Model (TIM): IM with
vacancies

® Ising spins with vacancies

N N N
H = —JZS;Sjt,'tj—QZt,'—HZS;t;
(i j) i=1 i=1
N

N

—H;3 Z(Sit,‘tj + Sjl’jt,') — KZ tit; ,

(i) (i)
where t; = 0,1 and s; = £1.

® The general phase diagram is quite complicated...

® The tricritical point is located onthe H=H3; =K =0J—-Q
plane.
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TIM: Scaling Limit, Tricritical Ising CFT

® The tricritical point is described by the M5 CFT minimal
model, with ¢ =7/10

e QOperator content:

conformal field physical role Landau-Ginzburg
weights field
(0,0) I identity
(&, ) o magnetisation o
(16-15) € energy L2
(116, 116) o' submagnetisation :®3:
(%, %) t  chemical potential : ®*:
(3.3) e’ (irrelevant) oM




Around the tricritical point

We study the following perturbations:
Alg, h, i, 2] = A+g/d2xe+h/d2xa+ h’/d2xa’+z/d2xt

A[g, 0, 07 0] E7 mModel christe, Mussardo 1990, Fateev, Zamolodchikov 1990

® g > 0 Disordered phase, 1GS, 7 particles
® g < 0 Ordered phase, 2GS 3 kinks-antikinks, 4 bound states of
them

A[O, h, 0, O] nOﬂ—Integl’ab|e, 3 partIC|eS Lassig, Mussardo, Cardy 1991
A[0,0, /', 0]: integrable A3 model, 2GS, kink-antikink,
bound state of them colomo, Koubek, Mussardo 1902

AJ0,0,0, z]: A4, massive or massless integrable. The

massive has 3-fold degenerate ground state.reshetikin, Smimov 1990,
Bernard, Leclair 1990



Around the tricritical point: effective
potential

V(e \/\V(«p
b
/ / V(@ —
V() V() /g:h’:l),h#() ( /hl#o?w()’h:(%
<I>_) Fi) \ \

g<O0hh' =0 g<0,h#0o0rh #0 V(e F V(@

g=h=0,h#0 ‘

[
g:h:O,h/%O(I) W #0,g<0,h=0
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Duality

One can introduce the formal operator D, implementing the
following duality transformation:

The magnetisation order parameters (odd fields) change into
the disorder operators:

p=D"teD, 1/ =D'tD.
Even fields transform to themselves:
DD=—-, DYtD=t, D ''D=-¢"
Therefore the thermal deformation (g oc T — T¢)
A=Arny+g /dzxe(x)

has a low-T /high-T duality.



TIM: Thermal deformation is the
integrable E7 model

The thermal deformation is an interacting integrable QFT
It is the E7 Toda theory

There are 7 stable particles, of masses m;, scattering, bound
state structure is known

Z> symmetry: 1,3,6 odd, 2,4,5,7 even particles
High-T: unique ground state, 7 particles

Low-T: 2-fold degenerate ground state, odd particles are
kinks, even particles are bound states of them (particles on
top of a ground state)



Form Factors: Matrix elements of local
operators
Form factors are matrix elements of local operators
F.3(01,02,..,00) = (0]0(0,0)[ Az, (61) A, (62) - . - Aa, (61))
Form Factor bootstrap equations:
SFy = Fmy
BFtnv1y = Fny
KFniay = Fmy
Solution (VEV, 1 and 2 particles):
Fo = const;  F,(#) = const;

Fab(91792) — M ;Tll)in
Dap(61 — 62)

FO are known Fateev, Lukyanov, Zamolodchikov, Zamolodchikov 1998, Dab7 Fab are
fixed by scattering data, we are looking for @

Cortés Cubero, Konik, ML, Mussardo, Takacs SciPost Phys. 12 (2022)

(61 — 02)



FF: Asymtotics

Q is given as
Nab
Qap(0) = Z ak , cosh* 0
i=0

OK, but which operator?
If the conformal dimension of the operator is Ao, then
lim FO ., (61,...,0,) ~ eolfil

|0j] =00 T
where yo < Ap, fixes N,y
This is usually enough, but in TIM gives the same for N, for
o/ and o' /p'
Bootstrap egs. lead to an incomplete set of equations for F;
and all



FF egs. for /o’

F& = 0.115722F + 0.587743F5

al, = 3.06131F — 19.8715F;
aly = —160.899F — 1600.15F5
a?, = —456.311F — 1437.25F5
als = 32.1365F; + 177.579F5
als = 37.5681F + 114.447F5
a3; = —38.6198F — 337.751F5
a3 = —87.8337F — 266.777F5
a3, = —493.626F) — 2722.44F5
a3, = —1495.64F — 5104.39F5

al, = —8.95069F — 30.9146F¢
aly = —626.504F; — 3040.25F3

als = 70.7301F;" + 289.789F5
ay; = —142.958F — 621.037F5

al, = —1617.98F — 6682.94F5
a3, = —399.244F — 1174.92F5



FF: Duality, Clustering

High-T: o/0’: Z; odd, pu/p': Z; even
One can exploit the duality:

Wwij.

I|m F2() = Fo

i (FPF) (2)

J
where odd FFs correspond to o /o’ even ones correspond to

w/u
For example:

Fd> F¢
0.851179 — 2.97692—2 = wy» (2>
F, F®
0 0
woy = *£1, turns out that wyy = —1 is consistent with the,
A-theorem, and the two solutions tell the two operators apart,
other clustering egs. fix all the one-particle form factors.



Check 1: A-theorem

® The A-theorem pelfino, Simonetti, cardy 1906 gives the the UV-conformal
weight of an operator:

AL = 2<1¢> /OOO dr r (8(r)(0))

® |nserting a complete set and truncating to the 1 and 2 particle

contributions that we calculated lead to?:
sum exact
|| 0.0367 | 0.0375
w' | 0.3824 | 0.4375

LForm factors of © are known Acerbi, Valleriani, Mussardo 1996



Check 2: Truncated Conformal Space

The Hamiltonian:
H=Hcrr +V

Diagonalize H using Hcrr as a basis (matrix elements of V
can be calculated)
Finite volume = discrete spectrum, truncation = finite matrix

Identify the ground state, 1- and 2-particle states, and
calculate matrix elements

Relate finite-volume form factors to infinite volume ones pozsgay,

Takacs 2008

Duality: o/c’ in low-T is p/p/ in high-T!



(0]l X)

0.5

0.4

0.3

0.2

0.1

Check 2: Truncated Conformal Space
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Around the tricritical point: effective
potential

V(e \/\V(«p
b
/ / V(@ —
V() V() /g:h’:l),h#() ( /hl#o?w()’h:(%
<I>_) Fi) \ \

g<O0hh' =0 g<0,h#0o0rh #0 V(e F V(@

g=h=0,h#0 ‘

[
g:h:O,h/%O(I) W #0,g<0,h=0




Confinement of kinks I.: E;

® There is a false vacuum, with finite energy density, AE where
AE = 2h(o)

for o, and
AE =21 (o)

for o/ perturbation

® Kinks-antikinks are confined due to a linear potential

® Semi-classical approximation: two kinks in linear potential
[20(p) — En+ AZIx]| 0 () =0, p=—id,
for identical kinks, and
(P +wi(p) = En + AEI] )65 (x) = 0

for non-identical kinks. w,(p) = \/m?2 + p?



Confinement of kinks I.: E;

® Solution can be given using saddle point, leading to the
quantization conditions:

. AE 1 .
sinh 20, — 20, = ey [2# <n + 4) + ilog 5(2«9,,)}
for identical, and

2 (1. o (1. 7 j

m3 | =sinh20, — 0, | —m; | zsinh20, — 0,
2 2
n 1 . ~

= A€ [277 (2 + 4> + ilog Sap(0, — 9,,)]

m,sinh 9n>

where GN,, = —sinh™! (
mp

for non-identical kink-antikink pairs The mass is given by
M, = 2mcosh 8, M, = m, cosh 6, + my cosh 9,,

® Expected to work better for larger n



E; Confinement: comparison to TCSA
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Figure 3: Meson masses in magnetic perturbations of the E7 model.
G =AE/m3

ML, Mussardo, Takécs, Phys.Lett.B 828 (2022)



Around the tricritical point: effective
potential

V(e \/\V(«p
b
/ / V(@ —
V() V() /g:h’:l),h#() ( /hl#o?w()’h:(%
<I>_) Fi) \ \

g<O0hh' =0 g<0,h#0o0rh #0 V(e F V(@

g=h=0,h#0 ‘

[
g:h:O,h/%O(I) W #0,g<0,h=0




Confinement of kinks Il.: A3 model

Kink structure

Ron
0 ~ 1
Kip

Non-diagonal scattering:
Rm Rlo - Ro1 klo
KioKoi — KioKo1 + K11 Kz

The energy density of the false vacuum

A€ = lg((e)1 — (Do)l

Confinement is expected only when 1 is lifted up, g < 0 (this
is verified by TCSA)

Semi-classics can be used here as well



A3 Confinement: comparison to TCSA

- ), -A- Mo
Y ﬂd - ¢ 1’\/74
2M,;

m(Ca)/mx

Figure 4: Meson masses in the thermal perturbation of the .43 model.
G = DE/mic, n=|W%5] (W% + |g]*/%)

ML, Mussardo, Takécs, Phys.Lett.B 828 (2022)
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Around the tricritical point: effective
potential

V(e \/\V(«p
b
/ / V(@ —
V() V() /g:h’:l),h#() ( /hl#o?w()’h:(%
<I>_) Fi) \ \

g<O0hh' =0 g<0,h#0o0rh #0 V(e F V(@

g=h=0,h#0 ‘

[
g:h:O,h/%O(I) W #0,g<0,h=0




Fate of the false vacuum as a quantum
quench

On spin chains: Lagnese, Surace, Kormos, Calabrese, 2021
Consider a model with degenerate ground states
Introduce a perturbation which unbalances them
Pick the true vacuum state as an initial state
Time evolve it with a Hamiltonian which unbalances in
the other way
E.g. Ising model in the ordered phase, hy — —hj
Expectation for time evolution of operators

o _ (O(1) +(0(0)) v
o(t) = 2(000)) x e

where

TM?
v = CAE exp [— AS}



field

0.89

e

0.79

0.71

h=10.26 —0.36

3
M?/AE
Figure 5: Time evolution and decay rate in the Ising model with magnetic
field. ML, Mussardo, Takécs, PRD 106 (2022); see also Szész-Schagrin, Takacs, 2022

Mt

Realization in the Ising model
Ising model in the ferromagnetic phase with longitudinal magnetic
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Decay in the tricritical Ising model

V(®)

Figure 6: Effective potential changes in various quenches (E7, As, Ay)

® From the E7 model, we found that large oscillations dominate

® From A3z depending on the sign of the coupling: visible or
large oscillaitons

® From A4: with magnetic field: oscillations, with ¢, visible

e QOscillations correspond to particles above the false vacuum!



Decay rates in the tricritical Ising model
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Figure 7: Decay rates in different quenches (A to para,.44 from
anti-symmetric/symmteric)
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Yang—Lee singularity: Ising model
® 2D Ising model

H:—JZS;SJ—FhZS;; s;==+1
(i) i

o Let z = e P" = e/ then the zeroes of the partition function
Z(z) are located on the unit circle LeeYang 1952

£ ~ .
+0o
— 0,

T>T, T=T, T < T,

« T < T,: density of zeroes is anomalous kortmann, Grifith 1071

n(8) "X |6 — )"



Yang—Lee singularity: Ising model
® Fisher, 1978
1 ) .
Ly, = 2 O+ (h— ih)p + iy + ...

® cady, 1050 Non-unitary minimal conformal field theory
M(2,5), Ceff = 2/5

{L, o} pxp=1+¢
® [sing model in imaginary magnetic field, spontaneously
broken PT Sym metry Fonseca, Zamolodchikov 2001, Xu, Zamolodchikov 2022

Ising fixed point



Tricritical point

® M(4,5) unitary minimal model

® 2 nontrivial relavant even fields: ¢,t

® 2 odd fields: 0,0’

ricritical fixed point

:

Nonunitary tricritical
fixed point




Results from truncated space: Ising model

We tune the imaginary magnetic field with fixed € coupling, in
finite volume.




Lesson from z =0

¢!
Figure 8: Sketch of the z = 0 section of the phase diagram. /¢’ are
dimensionless couplings of the leading/subleading magnetization.

One has to tune z to locate the tricritical point!



Results from truncated space: Tricritical
Ising model
Cr|t|ca| YL M(2, 5), TrICI’Itlca| YL M(2, 7) see also von Gehlen 1994
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Conclusion

E7 magnetic form factors
® Tricritical Ising model has a low-T /high-T duality
® Form factor bootstrap for order/disorder operators is
ambiguous
® Duality, clustering property and the A-theorem fix the
ambiguity
Confinement
® Confinement of non-identical kinks
® Confinement induced by thermal field
® A3 semi-classic meson quantization works surprisingly well
False vacuum decay: TCSA results are consistent with theory
for the decay rate; the decay is obscured by oscillations when
there are particles above the false vaccum

Proposal: Multicritical Yang—Lee: M(p, p + 1)+imaginary
coupled odd fields — multicritical surface M(2,2n + 3),
wherel<n<p-—1
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