Altered Probability States

Ludwik Turko
University of Wrocław, Poland

Margaret Island Symposium on Particles \& Plasmas

Budapest
June 7-9, 2023

Probability necesse est - that was the preliminary subject

- A characteristic of a system is said to be random when it is not known or cannot be predicted with complete certainty.
- For complete certainty a perfect precision and accuracy is necessary.
- There are no perfect experiments as collections of data are always statistical samples.
- Measurements involve a large successio of macroscopic and microscopic processes that randomly alter their outcome.
- To decipher meaning of statistical samples it's necessary to decipher underlying probabilistic distributions.
- To understand the meaning of probabilistic distributions an understanding of the probability is necessary.

Probabilities of deconfinement of finite size systems general approach

On the level of Quantum Mechanics. Restriction to the finite volume V - equivalent to the presence of the external potential $U(\vec{r})$:

$$
U(\vec{r})=\infty \quad \text { if } \quad \vec{r} \bar{\epsilon} V
$$

If $U(\vec{r})$ ceases at some time, then the system is subjected to the deconfinement process.

$$
\hat{H}= \begin{cases}-\frac{\hbar^{2}}{2 m} \Delta+U(\vec{r}), & \text { for } t \leq 0 \\ -\frac{\hbar^{2}}{2 m} \Delta, & \text { for } t>0\end{cases}
$$

Let ψ be any solution of the Schrödinger equation

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \Delta \psi+U(\vec{r}) \psi
$$

A general form of the free Schrödinger equation is a wave packet

$$
\int d^{3} p g(\vec{p}) e^{-i \frac{p^{2}}{2 m \hbar} t} e^{\frac{i}{\hbar} \vec{p} \cdot \vec{r}}
$$

A function

$$
\Psi(\vec{r}, t)= \begin{cases}\psi(\vec{r}, t), & \text { for } t \leq 0 \\ \int d^{3} p g(\vec{p}) e^{-i \frac{p^{2}}{2 m \hbar} t} e^{\frac{i}{\hbar} \vec{p} \cdot \vec{r}}, & \text { for } t>0\end{cases}
$$

is a solution of the Schrödinger equation

$$
i \hbar \frac{\partial \Psi}{\partial t}=\hat{H} \Psi
$$

The wave function $\Psi(\vec{r}, t)$ is continuous at $t=0$.

$$
\psi(\vec{r}, 0)=\int d^{3} p g(\vec{p}) e^{\frac{i}{\hat{F}} \vec{\cdot} \cdot \vec{r}} ;
$$

If a function ψ is a stationary solution then

$$
\psi_{E}(\vec{r}, t)=\phi_{E}(\vec{r}) e^{-\frac{i E}{\hbar} t}
$$

with ϕ_{E} satisfying a stationary Schrödinger equation

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \Delta \phi_{E}+U(\vec{r}) \phi_{E}=E \phi_{E} ; \\
\phi_{E}(\vec{r})=\int d^{3} p g(\vec{p}) e^{\frac{i}{\hbar} \cdot \vec{p} \cdot \vec{r}} ;
\end{gathered}
$$

General case

Subjected to deconfinement

A general interpretation of the Fourier transform of a wave function

The momentum distribution of a particle which was influenced by a potential and at time $t=0$ was suddenly freed.

There is no question about the energy conservation

because of the time-dependency of the hamiltonian
More about this subject, including some related mathematical problems:
L. Turko, "Finite size universe or perfect squash problem", J. Math.

Phys. 45 (2004), 3659-3675, doi:10.1063/1.1782671, [arXiv:quant-ph/0310128 [quant-ph]]. Be careful, the paper is unnecessary lengthly :-)

The simplest example - an infinite square wall

A one-dimensional potential

$$
U(x)= \begin{cases}0, & \text { for } 0 \leq x \leq a \\ \infty, & \text { for } x \text { everywhere else }\end{cases}
$$

with boundary conditions

$$
\psi(0)=\psi(a)=0
$$

The solutions

$$
\psi_{N}(x)=\left\{\begin{array}{cc}
\sqrt{\frac{2}{a}} \sin \frac{N \pi}{a} x, & \text { for } 0 \leq x \leq a \\
0, & \text { for } x \text { everywhere else }
\end{array}\right.
$$

The simplest example - an infinite square wall

Energy levels:

$$
E_{N}=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} N^{2}
$$

The Fourier integral of the wave function

$$
\begin{gathered}
\tilde{\psi}_{N}(k)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{a} d x \psi_{N}(x) e^{-i k x} \\
\tilde{\psi}_{N}(k)=-\sqrt{\pi a} \frac{2 N}{a^{2} k^{2}-N^{2} \pi^{2}} e^{-i a k / 2} \begin{cases}i \sin \frac{a k}{2}, & \text { for } N \text { even } \\
\cos \frac{a k}{2}, & \text { for } N \text { odd }\end{cases}
\end{gathered}
$$

The simplest example - an infinite square wall

Momentum probability distribution

$$
\mathcal{P}_{N}(p)=\frac{4 \pi a \hbar^{3} N^{2}}{\left(a^{2} p^{2}-\hbar^{2} N^{2} \pi^{2}\right)^{2}} \begin{cases}\sin ^{2} \frac{a p}{2 \hbar}, & \text { for } N \text { even } \\ \cos ^{2} \frac{a p}{2 \hbar}, & \text { for } N \text { odd }\end{cases}
$$

This gives an average value of the momentum equal to zero, and an average value of the squared momentum

David fights Goliath

David's sling can be considered as a two-dimensional quantum rotator with a potential

$$
U(\vec{r})=\frac{1}{2} m \omega^{2}\left(x^{2}+y^{2}\right) .
$$

Stationary solutions

$$
\begin{gathered}
E_{n_{1}, n_{2}}=\hbar \omega\left(n_{1}+n_{2}+1\right) \\
\phi_{n_{1}, n_{2}}(x, y)=C_{n_{1}, n_{2}} e^{-\frac{m \omega}{2 \hbar}\left(x^{2}+y^{2}\right)} H_{n_{1}}\left(x \sqrt{\frac{m \omega}{\hbar}}\right) H_{n_{2}}\left(y \sqrt{\frac{m \omega}{\hbar}}\right) .
\end{gathered}
$$

David fights Goliath

If Goliath were hit directly by a stone still on a cord then he would absorb an impact energy $E_{n_{1}, n_{2}}$, maybe not enough for him. But related momentum distribution is

$$
e^{-\frac{p_{x}^{2}+p_{y}^{2}}{m \omega \hbar}} H_{n_{1}}^{2}\left(\frac{p_{x}}{\sqrt{m \omega \hbar}}\right) H_{n_{2}}^{2}\left(\frac{p_{y}}{\sqrt{m \omega \hbar}}\right) .
$$

and David defeated Goliath - taking into account the power of his protector.

