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Cosmic relic magnetism I – Pre-CMB signal?
Magnetic flux is conserved 

over a comoving surface
Qualitative description of relic 

magnetism over cosmological time.

Magnetogenesis?

The upper and lower bounds on inter-galactic magnetic 

fields (IGMF) coherent over Mpc scales is shown.
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Cosmic relic magnetism II – Pre-CMB signal?
Magnetic flux is conserved 

over a comoving surface
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The temperature also decreases over cosmic expansion as

𝑇 𝑡 = 𝑇0
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This lets us define a conserved cosmic “magnetic scale” for charged particles

𝑇0 = 2.7 K (2.3 × 10−4 eV)

Contemporary temperature

10−12 T > ℬ0 > 10−20 T

Contemporary B-fields

10−3 > 𝑏0 > 10−11

Thus 𝑏0 controls the strength of the magnetization 

of the primordial electron-positron plasma.

Magnetic fields present in cosmic voids would 

be “uncontaminated” primordial relics.

Upper: Faraday rotation of radio AGN

Lower: Spectra of “blazar” AGN

As determined from the Cosmic 

Microwave Background (CMB)

(ℏ = 𝑐 = 𝑘𝐵 = 1)
In natural units:

Note: B-field grows with temperature.



We propose that this dense matter-antimatter plasma was highly 

magnetized (and may be responsible for cosmic magnetism).

Why electron-positron epoch and cosmic magnetism? Electron-positron pair abundance

Prior to electron-positron annihilation, there 

was almost a 450 million 𝑒+𝑒− pairs per baryon 

𝑛𝑒±

𝑛𝐵
= 4.47 × 108

5

This was the density prior to Big Bang 

nucleosynthesis (BBN) (occurring in range 

𝑇 = 70 − 40 keV). After annihilation this, 

the universe was left with

𝑛𝑒−

𝑛𝐵
= 0.87

determined by the charge neutrality of the universe 

and baryon asymmetry. Slight deviation from unity 

due to bound neutrons.

𝑇 > 511 keV

𝑇 < 20.3 keV

BBN

𝛾 + 𝛾 ↔ 𝑒+ + 𝑒−

| Ԧ𝜇𝑒±|

| Ԧ𝜇𝑝|
=
𝑔𝑒
𝑔𝑝

𝑚𝑝

𝑚𝑒
≈ 633

Ratio of magnetic moments
g-factor



ln𝓩 = ෍

𝑠𝑡𝑎𝑡𝑒𝑠

ln 1 + 𝝀exp−
𝐸

𝑇

𝑛𝑒±

𝑛𝐵
= 𝑋𝑝

𝑛𝑒±

𝑛𝑒− − 𝑛𝑒+

First principles derivation of high temperature ratio – I

Using the charge neutrality of the universe, we 

can write the baryon density as a function of the 

charged lepton asymmetry.
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BBN

𝑛𝑒− − 𝑛𝑒+ = 𝑛𝑝 →
𝑛𝑝

𝑛𝐵
𝒏𝑩 𝑋𝑝 ≡

𝑛𝑝

𝑛𝐵

𝑛𝑒− − 𝑛𝑒+ =
1

𝑉
𝝀
𝜕 ln𝓩𝒆+𝒆−

𝜕𝝀

Partition 

Function

Fugacity

𝛾 + 𝛾 ↔ 𝑒+ + 𝑒−The charged lepton asymmetry is written as

(a) Density grows far faster than temperature.

Contrary to the traditional case, magnetization will increase at 

higher temperatures. How? – Stay tuned for next slides!

𝝀 = exp
𝜇

𝑇The working equation for 

lepton-to-baryon ratio is then

(b) B-field grows with temperature.



𝑛𝑒±

𝑛𝐵
= 𝑋𝑝

𝜕 ln𝒵𝑒±

𝜕𝝀

𝜕 ln𝒵𝑒+𝑒−

𝜕𝝀

−1

First principles derivation of high temperature ratio – II

Putting it all together, our working equation is…
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−

𝝁
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1

𝑉
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𝑛𝐵

𝑠𝛾,𝜈,𝑒+𝑒−
𝒔𝜸,𝝂,𝒆+𝒆−

The fugacity can be determined by entropy conservation and baryon asymmetry

𝒔𝜸,𝝂,𝒆+𝒆− =
2𝜋2

45
𝑇𝛾
3 𝑔𝛾 + 𝑔𝜈
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3

+
𝜌𝑒+𝑒− + 𝑃𝑒+𝑒−

𝑇𝛾
−
𝜇

𝑇𝛾
𝑛𝑒− − 𝑛𝑒+

𝑛𝐵
𝑠𝛾,𝜈,𝑒+𝑒−

=
𝑛𝐵
𝑠 𝑡0

= 0.856 ± 0.008 × 10−10

𝒆+𝒆− entropy

The fugacity and thus chemical potential is numerically evaluated. 

Thanks to Cheng Tao teaching me this derivation!
𝝀 = exp

𝝁

𝑻

𝜸, 𝝂 entropy

Yang, Cheng Tao, and Johann 

Rafelski. "Cosmological 

strangeness abundance." Physics 

Letters B 827 (2022): 136944.

Degrees of freedom:

𝑔𝛾 = 2 𝑔𝜈 = 2 × 3 = 6



Statistical properties of the electron-positron gas – I

Let us look at the magnetized fermion partition function to describe the 𝑒+𝑒− gas.
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ln 𝒵𝑒+𝑒− =
2𝑒ℬ𝑉

2𝜋 2
෍

𝜎

±

෍

𝑠

±

෍

𝑛=0

∞

න
0

∞

𝑑𝑝𝑧 ln 1 + 𝜆𝜎𝜉𝑠 exp −
𝐸𝑛
𝑠

𝑇

Quantum energy 

eigenvalues (next slide)

Fugacity “Spin” Fugacity

𝑩 = 𝓑෡𝒌

We sum over particles and antiparticles 𝜎 , spin polarizations 𝑠 , and Landau 

orbital levels 𝑛 . In principle we could include other particles if needed: baryons, 

neutrinos, etc…

We also introduce the following two kinds of fugacity

a. Chemical Fugacity:

b. Spin Fugacity:

𝜆𝜎 = exp
𝜇𝜎
𝑇

𝜉𝑠 = exp
𝜂𝑠
𝑇

𝜇 ≡ 𝜇𝑒− = −𝜇𝑒+

𝜉 ≡ 𝜉+ = −𝜉−

The “spin” fugacity represents an 

imbalance of spins within the gas and 

is constrained by conservation of 

angular momentum. 

A value of 𝜉 ≠ 1 indicates angular 

momentum in other species, orbital 

motion, or a locally polarized domain.

Υ𝜎
𝑠 = 𝜆𝜎𝜉𝑠 = exp

𝜆𝜎 + 𝜉𝑠
𝑇

Generalized 

Fugacity
We will return to 𝝃𝒔 at the end!



Statistical properties of the electron-positron gas – II

The Klein-Gordon-Pauli (KGP) energy eigenvalues of the 

magnetized fermion are given by
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ln𝒵𝑒+𝑒− =
2𝑞ℬ𝑉

2𝜋 2
෍
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𝑠
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න
0

∞

𝑑𝑝𝑧 ln 1 + 𝜆𝜎 exp −
𝐸𝑛
𝑠

𝑇

𝐸𝑛
± 𝑝𝑧, ℬ = 𝑚𝑒

2 + 𝑝𝑧
2 + 𝑒ℬ 2𝑛 + 1 ∓

𝑔

2
We can rearrange into a more convenient form

𝐸𝑛
± 𝑝𝑧, ℬ = 𝑚±

2 1 +
𝑝𝑧
2

𝑚±
2 +

2𝑒ℬ

𝑚±
2

𝑚±
2 = 𝑚𝑒

2 + 𝑒ℬ 1 ∓
𝑔

2

𝑩 = 𝓑෡𝒌

This effective “polarized mass” bundles the 

spin and the Landau ground state which is 

ultimately responsible for the magnetization.



෍

𝑛=𝑎

𝑏

𝑓 𝑛 = න
𝑎

𝑏

𝑓 𝑛 dn +
𝑓 𝑏 + 𝑓(𝑎)

2
+෍

𝑗=1

∞
𝐵2𝑗
2𝑗 !

𝑓 2𝑗−1 𝑏 − 𝑓 2𝑗−1 𝑎 + 𝑅 𝑎, 𝑏, 𝑗

Euler-Maclaurin integration of the partition function – I 

We can replace the sum over Landau orbitals with an integral using the Euler-Maclaurin formula
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ln𝒵𝑒+𝑒− =
2𝑞ℬ𝑉

2𝜋 2
෍

𝜎

±

෍

𝑠

±

෍

𝑛=0

∞

න
0

∞

𝑑𝑝𝑧 ln 1 + 𝜆𝜎 exp −
𝐸𝑛
𝑠

𝑇

Note that 𝐵2𝑗 are Bernoulli numbers. In general, 𝑅 𝑎, 𝑏, 𝑗 is nonzero. We do not return to its size here.

We obtain a partition function 𝑗 = 1 with the form

Remainder Error

ln 𝒵𝑒+𝑒− = ln𝒵𝑓𝑟𝑒𝑒 + ln𝒵𝐵 + ln𝒵𝑅

ln 1 + 𝑥 =෍

𝑘

∞

−1 𝑘+1
𝑥𝑘

𝑘

Log replacement



Euler-Maclaurin integration of the partition function – II 

11

More explicitly, our partition function (with ln𝒵𝑅 truncated) has the structure

ln 𝒵𝑓𝑟𝑒𝑒 =
𝑇3𝑉

2𝜋2
෍

𝑠

±

෍

𝑘

∞
−1 𝑘+1

𝑘4
2 cosh

𝑘𝜇

𝑇
𝑘2𝑥𝑠

2𝐾2 𝑥𝑠

Bessel functions of 

the second kind

ln 𝒵𝐵 =
𝑇3𝑉

2𝜋2
෍

𝑠

±

෍

𝑘

∞
−1 𝑘+1

𝑘2
2 cosh

𝑘𝜇

𝑇

𝑘𝑥𝑠𝒃𝟎
2

𝐾1 𝑘𝑥𝑠 +
𝑘2𝒃𝟎

𝟐

12
𝐾0 𝑘𝑥𝑠

The first portion is a “free” Fermi gas partition function, however as it 

depends on 𝑥±, the spin magnetic response still manifests. It turns out this 

will be the dominant term in most phenomenon.

We write a combined form in Boltzmann approximation 𝑘 = 1; 𝑇 > 𝑚𝑒

𝑥± ≡
𝑚±

𝑇
=

𝑚𝑒
2

𝑇2
+ 2𝒃𝟎 1 ∓

𝑔

2

ln𝒵𝑒+𝑒− ≃
𝑇3𝑉

2𝜋2
෍

𝑠

±

2 cosh
𝜇

𝑇
𝑥𝑠
2𝐾2 𝑥𝑠 +

𝒃𝟎
2
𝑥𝑠𝐾1 𝑥𝑠 +

𝒃𝟎
𝟐

12
𝐾0 𝑥𝑠



Evaluation of the chemical potential
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𝑛𝑝 = 𝑛𝑒− − 𝑛𝑒+ =
1

𝑉
𝜆
𝜕 ln𝒵𝑒+𝑒−

𝜕𝜆

The chemical potential of the partition function is 

controlled by the charge neutrality condition which 

connects the number density of excess electrons in the 

universe to the proton density.

Dominant for the ranges 

of 𝒃𝟎 considered

sinh
𝜇

𝑇
=
𝜋2𝑛𝑝

𝑇3
𝑥𝑠
2𝐾2 𝑥𝑠 +

𝒃𝟎
2
𝑥𝑠𝐾1 𝑥𝑠 +

𝒃𝟎
𝟐

12
𝐾0 𝑥𝑠

−1

The chemical potential resembles the free Fermi case as the magnetic response 

only becomes significant at unrealistically large external field strengths.

10−3 > 𝑏0 > 10−11



Magnetization of the electron-positron gas
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ഥℳ ≡
ℳ

ℬ𝐶
ℬ𝐶 =

𝑚𝑒
2

𝑒
= 4.41 × 109 T

The magnetization can be written as a derivative of 

the cosmic magnetic scale. We define dimensionless 

magnetization based on critical field strength.

𝑥± ≡
𝑚±

𝑇
=

𝑚𝑒
2

𝑇2
+ 2𝑏0 1 ∓

𝑔

2

Finally, what we were after!

ℳ ≡
𝑇

𝑉

𝜕

𝜕ℬ
ln 𝒵𝑒+𝑒− =

𝑇

𝑉

𝜕𝑏0
𝜕ℬ

𝜕

𝜕𝑏0
ln 𝒵𝑒+𝑒−

𝑔 = 2

Warning: Because we’re using the Boltzmann approximation, the high temperature behavior is uncertain. A more 

complete analysis is required. Magnetization as a derivative is sensitive to corrections.



Hot magnetization: (a) Density rise overwhelms temperature
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As promised, we can demonstrate why the magnetization increases with temperature by fixing the magnetic field 

to a constant value. Without the increasing magnetic field, the magnetization rise with temperature is shown to be 

dominated by the huge increase in pair density.

𝑒ℬ = 10−3𝑇0 = 10−3 10 keV

𝑔 = 2

Warning: Because we’re using the Boltzmann approximation, the high temperature behavior is uncertain. A more 

complete analysis is required. Magnetization as a derivative is sensitive to corrections.



Hot magnetization: (b) Average moment-per-lepton
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Warning: Because we’re using the Boltzmann approximation, the high temperature behavior is uncertain. A more 

complete analysis is required. Magnetization as a derivative is sensitive to corrections.

The second reason for “hot magnetization” is that the magnetic scale 𝒃𝟎 ensures the magnetic strength 𝓑 rises in 

the past with the temperature. Show this more clearly, we define the average magnetization-per-lepton with or 

without the rising field:

𝑇0 = 10 keV

𝑔 = 2

𝑇0 = 10 keV

𝑔 = 2

𝑚 ≡
ℳ

𝑛𝑒+ + 𝑛𝑒−
Without the rising field, the magnetization is suppressed 

at higher temperatures, as traditionally expected.

𝜇𝐵 =
𝑒

2𝑚



Spin potential (fugacity) and possible cosmic ferromagnetism
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Up to this point, we’ve neglected the spin potential we originally introduced. As an interesting aside, let us 

determined the magnetization of the electron-positron gas with zero external fields 𝒃𝟎 = 𝟎 and 𝝃 ≠ 𝟏.

This has a “ferromagnetic” character as the magnetization in non-vanishing in zero external fields. As hyperbolic-

sine is odd, the sign of the spin potential 𝜼 controls the directionality of magnetization along a preferred axis.

Still in progress tidbit you’ll have to wait for the publication to read: Certain domains of self-

magnetization controlled by 𝜼 are suspiciously near the upper bound of the cosmic magnetic field strength.

10−3 > 𝑏0 > 10−11

10−12 T > ℬ > 10−20 T



Outlook and conclusions
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We’ve demonstrated the following features of the magnetized electron-positron gas:

• We’ve cast the fermion partition function such that the “spin magnetization” is directly 

expressed in the mass via 𝑚±.

• Using Euler-Maclaurin summation in the Boltzmann limit, we’ve obtained the 

magnetization of the primordial electron-positron gas with paramagnetic properties.

• The magnetization of the universe increases in the distant past because (a) the electron-

positron pair density out-competes the rise in temperature and (b) external fields also 

grow in the past.

• There is the possibility of self-magnetization when spin fugacity is introduced. Much 

work here is still needed. Thank you for your attention!
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