Classical holography

Peter Ván

Institute of Particle and Nuclear Physics, Department of Theoretical Physics

Montavid Thermodynamic Research Group

Margaret Island Symposium Budapest, 07.06.2023.

1 Preliminary remarks: locality, holography

- 2 Entropy inequality
- 3 Newtonian gravity
- 4 Korteweg fluids

Local, nonlocal and weakly nonlocal

Locality in space(time)

- Local fields and local field equations. Example: $\varphi(t, \mathsf{x})$, Poisson equation.
- Space integrals in the field equations: strong nonlocality.
- Nonlocal fields: Example: $f(t, x_1, x_2)$, Liouville equation, entanglement.
- Weak nonlocality: extension of the field equations with higher order space derivatives. Example: gradient fluids, Horndeski gravity.

Locality in time

- Locality in time. No memory. Markov process.
- Memory functionals in the field equations: strong memory. Example: principle of fading memory.
- Multitemporal fields: science fiction?
- Weak 'nonlocality' in time: higher order time derivatives in the field equations. Example: second sound, delay and inertia.

Holography

 $Holography \leftarrow holos+graphe = complete, whole + drawing, writing.$

Optical holography

- Dennis Gabor. Reproduction of 3 dimensional information from 2 dimensional projections.
- Interferometric. Amplitude and phase. For any wavelike propagation.
 E.g. ambisonic sound.

Holography in quantum field theories

- Generalisation of black hole thermodynamics. Hawking, t'Hooft, Susskind. Entropy is area. (Is that? Biró et al. 2018, 2020)
- Abstracted in string theory. Expected in quantum gravity.
- AdS-CFT correspondence.
- Entanglement. Unruh effect (thermodynamics!). Emergent gravity of Verlinde.

Classical holography I

Balance of momentum. Global form: $\dot{M} = -F + P$.

$$\rho \dot{\boldsymbol{v}} + \nabla \cdot \boldsymbol{P} = -\rho \nabla \varphi, \qquad \rho \dot{\boldsymbol{v}}^{i} + \partial_k P^{ik} = -\rho \partial^i \varphi. \tag{1}$$

Bulk and surface forces. Substantial or comoving derivative:

$$\dot{a} = \partial_t a + v^k \partial_k a$$

Convective and conductive current densities:

$$\boldsymbol{P}_{conv} = \boldsymbol{P}_{cond} + \rho \boldsymbol{v} \boldsymbol{v}$$

Newtonian gravity ($\Delta \varphi = 4\pi G \rho$):

$$\rho \nabla \varphi = \nabla \cdot \boldsymbol{P}_{grav}(\nabla \varphi) = \nabla \cdot \left(\frac{1}{4\pi G} \left[\nabla \varphi \nabla \varphi - \frac{1}{2} (\nabla \varphi)^2 \boldsymbol{I}\right]\right)$$

Maxwell stress tensor.

Classical holography II

Gravity is holographic

$$\rho \dot{\boldsymbol{v}} + \nabla \cdot \boldsymbol{P}_{grav} = \boldsymbol{0} \quad \Longleftrightarrow \quad \dot{\boldsymbol{v}} = -\nabla \varphi$$

Particle or field?? Test particle and integrating screens. Constant background field or field theory? ($\dot{\rho} + \rho \nabla \cdot \mathbf{v} = 0$, $\Delta \varphi = 4\pi G \rho$)

Holographic Euler fluids

Ideal Euler fluids: $P_{Euler} = p(u, \rho)I$. p is the thermostatic pressure, e.g. ideal gas.

$$\nabla \cdot \boldsymbol{P}_{\textit{Euler}} = \nabla \boldsymbol{p} = \rho \nabla \mu + \rho \boldsymbol{s} \nabla T$$

Follows from the Gibbs-Duhem relation. For isothermal processes of ANY fluid the chemical potential is a mechanical potential. Friedmann equation

Classical holographic property

 $\nabla \cdot \boldsymbol{P(...)} = \rho \nabla \phi(...)$

Constitutive (...), material property. Thermodynamics or field equation dependent?

How to solve a constrained inequality?

Constitutive state space

Coleman-Noll and Liu procedures. Separation of functions and variables. The entropy inequality is *conditional*:

$$\rho \dot{e} + \nabla \cdot \boldsymbol{q}(e, \nabla e) = 0,$$

$$\rho \dot{s}(e, \nabla e) + \nabla \cdot \boldsymbol{J}(e, \nabla e) - \Lambda(e, \nabla e)(\rho \dot{e} + \nabla \cdot \boldsymbol{q}(e, \nabla e)) =$$

$$\rho \frac{\partial s}{\partial \nabla e} (\nabla e)^{\cdot} + \rho \left(\frac{1}{T} - \Lambda\right) \dot{e} + ... \ge 0$$

Liu-procedure, Lagrange-Farkas-multipliers. It follows that:

$$rac{\partial s}{\partial
abla e}(e,
abla e)=0, \qquad \Lambda=rac{1}{T}, \quad ext{and} \quad oldsymbol{q}(e,
abla e)\cdot
abla \left(rac{1}{T}(e)
ight)\geq 0$$

Constitutive state variables: $(e, \nabla e)$ \rightarrow thermodynamic state variables: (e)Process direction variables: $(\dot{e}, (\nabla e), \nabla^2 e)$

Various theories with weakly nonlocal extensions

Classified by constitutive state spaces and constraints

- Heat conduction. Internal energy or temperature. $(e, \nabla e, \nabla^2 e, ...)$. Constraint: balance of internal energy.
- Internal variables (e.g. phase fields). (φ, ∇φ, ∇²φ, ...). Tensorial order may be arbitrary.

Constraint: evolution equation, free or balance (Ginzburg-Landau-Alen-Cahn, Cahn-Hilliard).

- Internal variables and fluid mechanics $(\rho, \nabla \rho, \nu, \nabla \nu, e, \nabla e, \varphi, \nabla \varphi, \nabla^2 \varphi)$ Constraint: evolution equation, balances of mass momentum and energy (\rightarrow Newtonian gravity and more)
- Fluid mechanics. Mass, velocity and energy. (ρ, ∇ρ, ∇²ρ, ν, ∇ν, e, ∇e))

Constraints: balances of mass, momentum and energy (\rightarrow quantum mechanics and more)

Solid mechanics. Mass, strain and energy (ε, ∇ε, ∇²ε, ...), and more gradients.

Constraints: kinematics, balances of mass, momentum and energy.

Newtonian gravity

VP-Abe (Physica A, 2022) Abe-VP (Symmetry, 2022) Pszota-VP (arXiv: 2306.01825)

Scalar field and hydrodynamics

 $s(e - \varphi - \frac{\nabla \varphi \cdot \nabla \varphi}{8\pi G \rho}, \rho)$. Gibbs relation:

$$du = Tds + rac{p}{
ho^2}d
ho = de - d\left(arphi + rac{
abla arphi \cdot
abla arphi}{8\pi G
ho}
ight)$$

The potential energy, arphi, the field energy and internal energy are separated.

Balances of mass, momentum, internal energy + field equation:

$$\begin{split} \dot{\rho} + \rho \nabla \cdot \mathbf{v} &= \mathbf{0}, \\ \rho \dot{\mathbf{v}} + \nabla \cdot \mathbf{P} &= \mathbf{0}, \\ \rho \dot{\mathbf{e}} + \nabla \cdot \mathbf{q} &= -\mathbf{P} : \nabla \mathbf{v} \\ \dot{\varphi} &= \mathbf{f}. \end{split}$$

Constraints of the entropy inequality:

$$ho \dot{\boldsymbol{s}} +
abla \cdot \boldsymbol{J} = \boldsymbol{\Sigma} \ge \boldsymbol{0}$$

11/43

Gravity

Constitutive state variables: $(e, \nabla e, \rho, \nabla \rho, (\mathbf{v}), \nabla \mathbf{v}, \varphi, \nabla \varphi, \nabla^2 \varphi)$ \rightarrow thermodynamic state variabless: $(e, \rho, \varphi, \nabla \varphi)$

$$\rho \dot{s} + \nabla \cdot \boldsymbol{J} = \left(\boldsymbol{q} + \frac{\dot{\varphi}}{4\pi G} \nabla \varphi \right) \cdot \nabla \left(\frac{1}{T} \right) \\ + \left[\frac{\dot{\varphi}}{4\pi GT} \left(\Delta \varphi - 4\pi G \rho \right) \right] \\ - \left[\boldsymbol{P} - \rho \boldsymbol{I} - \frac{1}{4\pi G} \left(\nabla \varphi \nabla \varphi - \frac{1}{2} \nabla \varphi \cdot \nabla \varphi \boldsymbol{I} \right) \right] : \frac{\nabla \boldsymbol{v}}{T} \ge 0$$

- With Liu procedure as well.
- Holographic property:

$$\nabla \cdot \left(\rho \boldsymbol{I} + \frac{1}{4\pi G} \left(\nabla \varphi \nabla \varphi - \frac{1}{2} \nabla \varphi \cdot \nabla \varphi \boldsymbol{I} \right) \right) = \rho \nabla (\mu + \varphi)$$

Nonlinear extension, static, nondissipative field

Stationary nondissipative field equation :

$$\mathbf{0} = \mathbf{\Delta}\varphi - \mathbf{4}\pi\mathbf{G}\rho - \mathbf{K}\nabla\varphi\cdot\nabla\varphi.$$

Vacuum solutions $\rho = 0$:

$$\varphi(\mathbf{r}) = \frac{1}{K} \ln(r)$$

Spherical symmetric force field. Crossover. Apparent and real masses:

Modified gravity and Dark Matter

Interplay: hidden Galilean covariance

Spacetime aspects - separation of material and motion

 $\frac{\partial(\rho e_{total})}{\partial t} + \nabla \cdot (\boldsymbol{q} + \rho \boldsymbol{v} e_{total} + \boldsymbol{P} \cdot \boldsymbol{v}) = 0, \quad \rightarrow \quad \rho \dot{e}_{total} + \nabla \cdot (\boldsymbol{q} + \boldsymbol{P} \cdot \boldsymbol{v}) = 0$

It is a change of frame:

- Comoving(substantial) time derivative: $\dot{e} = \frac{\partial e}{\partial t} + \mathbf{v} \cdot \nabla e$,
- Galilean four-vector: ($\rho e, \boldsymbol{q}$), convective and conductive current densities.
- constitutive state space: ∇e is spacelike covector,
- total and internal energies: $e = e_{TOT} v^2/2$.

Consequences

- What is comoving? Mass? Energy? Observer representations. Flow-frame.
- Total energy, kinetic energy and internal energy. Galilean relativistic energy-momentum-mass four-tensor. Consequence: entropy production is objective.
- Temperature is a Galilean relativistic four-vector: thermal reference frames.

Korteweg fluids

VP-Fülöp (Proc. Roy. Soc., 2004) VP-Kovács (Phil. Trans. Roy. Soc. A, 2020) VP (Physics of Fluids, 2023)

Korteweg fluids: history

Capillarity.

Van der Waals: gradient of density is a thermodynamic variable. Korteweg (1905): second gradient of density, pressure expansion.

Balances of mass, momentum and internal energy:

$$\dot{
ho} +
ho
abla \cdot \mathbf{v} = \mathbf{0},$$

 $ho \dot{\mathbf{v}} +
abla \cdot \mathbf{P} = \mathbf{0},$
 $(
ho \dot{\mathbf{e}} +
abla \cdot \mathbf{q} = -\mathbf{P} :
abla \mathbf{v}.)$

$$oldsymbol{P} = \left(oldsymbol{p} - lpha \Delta
ho - eta (
abla
ho)^2
ight) oldsymbol{I} - \delta
abla
ho \circ
abla
ho - \gamma
abla^2
ho$$

 $lpha,eta,\gamma,\delta$ are density dependent material parameters. Instable. Second law? Eckart fluids 1948, Dunn and Serrin 1985.

Korteweg fluids – Liu procedure

Constitutive state variables: $(e, \nabla e, \rho, \nabla \rho, (\mathbf{v}), \nabla \mathbf{v})$ \rightarrow thermodynamic state variables: $(e, \rho, \nabla \rho)$ Process direction: $(\dot{e}, (\nabla e), \nabla^2 e, \dot{\rho}, (\nabla \rho), \nabla^2 \rho, \dot{\mathbf{v}}, (\nabla^2 \mathbf{v}))$

$$egin{aligned} &
ho\dot{m{s}} +
abla \cdot m{J} = m{q} \cdot
abla \left(rac{1}{T}
ight) - & - \left[m{P} - m{
ho}m{I}
ight] : rac{
abla m{v}}{T} \ge & 0 \end{aligned}$$

- Classical irreversible thermodynamics.
- The pressure of an ideal, non-dissipative Euler fluid:

$$oldsymbol{P}=p(e,
ho)oldsymbol{I}$$

Korteweg fluids – Liu procedure

Constitutive state variables: $(e, \nabla e, \rho, \nabla \rho, \nabla^2 \rho, (\mathbf{v}), \nabla \mathbf{v})$ \rightarrow thermodynamic state variables: $(e, \rho, \nabla \rho)$ Process direction: $(\dot{e}, (\nabla e), \nabla^2 e, \dot{\rho}, (\nabla \rho), (\nabla^2 \rho), \nabla^3 \rho, \dot{\mathbf{v}}, (\nabla^2 \mathbf{v}))$

$$\rho \dot{s} + \nabla \cdot \boldsymbol{J} = \boldsymbol{q} \cdot \nabla \left(\frac{1}{T}\right) - \left[\boldsymbol{P} - \rho \boldsymbol{I} - \frac{\rho^2}{2} \left(\nabla \cdot \frac{\partial s}{\partial \nabla \rho} \boldsymbol{I} + \nabla \frac{\partial s}{\partial \nabla \rho}\right)\right] : \frac{\nabla \boldsymbol{v}}{T} \ge 0$$

- Rigorous methods are essential.
- The pressure of an ideal, non-dissipative Korteweg fluid :

$$\mathbf{P} = p(e,\rho)\mathbf{I} + \frac{\rho^2}{2} \left(\nabla \cdot \frac{\partial s}{\partial \nabla \rho} \mathbf{I} + \nabla \frac{\partial s}{\partial \nabla \rho} \right)$$

Perfect Korteweg fluids - holography

$$oldsymbol{P}_{K}=rac{
ho^{2}}{2}\left(
abla \cdot rac{\partial oldsymbol{s}}{\partial
abla
ho}oldsymbol{l}+
abla rac{\partial oldsymbol{s}}{\partial
abla
ho}
ight)$$

• Classical holographic property, with internal energy:

$$\overline{\nabla \cdot \boldsymbol{P}_{\mathcal{K}}} =
ho(\nabla \phi + T \nabla s)$$
, where $\phi = rac{\partial
ho u}{\partial
ho} - \nabla \cdot rac{\partial (
ho u)}{\partial \nabla
ho} = \left. \delta_{
ho}(
ho u)
ight|_{
ho s}$

Functional derivative. Equivalently: chemical potential, homotherm.
Momentum balance: continuum AND point mass

$$\rho \dot{\boldsymbol{v}} + \nabla \cdot \boldsymbol{P}_{\mathcal{K}} = \rho (\dot{\boldsymbol{v}} + \nabla \phi) = 0 \quad \rightarrow \quad \dot{\boldsymbol{v}} = -\nabla \phi$$

- Conserved vorticity follows.
- Bohm potential?

Probabilistic Korteweg fluids - additivity

Zeroth Law of thermodynamics: separability of independent physical systems.

Multicomponent normal fluids. Notation : $\rho_1 = \rho_1(\mathbf{x}_1)$.

$$\mathsf{u}(\rho_1+\rho_2)=\mathsf{u}(\rho_1)+\mathsf{u}(\rho_2).$$

Multicomponent probabilistic fluids:

$$\mathsf{u}(\rho_1\rho_2)=\mathsf{u}(\rho_1)+\mathsf{u}(\rho_2).$$

Functional condition, $\rho_{tot} = \rho_1 \rho_1$:

$$\begin{split} \mathsf{u}(\rho_{tot}, (\nabla \rho_{tot})^2) &= \mathsf{u}\left(\rho_1 \rho_2, (\rho_2 \nabla_1 \rho_1)^2 + (\rho_1 \nabla_2 \rho_2)^2\right) = \\ \mathsf{u}(\rho_1, (\nabla_1 \rho_1)^2) + \mathsf{u}(\rho_2, (\nabla_2 \rho_2)^2). \end{split}$$

Unique solution :

$$u(\rho, (\nabla \rho)^2) = k \ln \rho + \frac{\kappa}{2} \frac{(\nabla \rho)^2}{\rho^2}$$

Independent Schrödinger equations for independent particles/components.

Summary

There is a thermodynamic road to quantum physics:

- Second law and ideality conditions: classical holography = wave-particle duality.
- Additivity => superfluids
- Density independent potential, $\hbar : \Longrightarrow$ Schrödinger equation

Classical holography

- The Second Law of Thermodynamics is fundamental.
- It is applicable for fields and informative in the marginal case of zero dissipation.
- There are real physical systems all along the road.
- It is quantisation method.

Thank you for the attention!

N. Jarka

"This may be true, because it is mathematically trivial." (somebody from Princeton, according to R. Pisarski)

What is quantum mechanics?

Early history

- Schrödinger, *Quantisierung als Eigenwertproblem I-II.*, AdP (1926), Heft 4, closed 18 March 1926;
- Madelung, *Quantentheorie in hydrodynamischer Form*, ZfP, (1926), submitted 25 Oktober 1926;
- Bohm, A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables I-II., PhysRev (1952);
- de Broglie, Fényes, Nelson, Jánossy, Takabayashi, Bell, Vigier, Holland, etc...
- Jackiw et al. (2004). Every non-Abelian gauge theory can be reformulated as hydrodynamics. QCD, QGP. (See G. Torrieri I guess).
- Cosmology. K. Huang, Khoury, Hossenfelder, etc... Dark matter vs MOND: superfluidity.
- Biró-Ván: Splitting the source term for the Einstein equation to classical and quantum parts, FoP (2015). Transformed Klein-Gordon and Einstein equations.

Quantum fluids exist:

Scanned with CamScanner

Vortice lines in He II, from boundary to boundary. Donelly, 1991.

Superfluidity

Histocical remarks and more

- Landau, ZhETP (1941).
- Bohm and Pines (1952), Gross and Pitaevskii (1961).
- Dense plasmas. Critical survey of Bonitz et al. (2019).
- QGP, T. Kodama et al., stochastic qm., Jackiw et al (2004).
- G.E. Volovik: The Universe in a Helium Droplet (2003).

Theory notes: there is no quantisation

- There is a Hamiltonian but there is no Lagrangian.
- Hydro is an effective theory and cannot be quantised.
- (Note: Like gravity. Therefore gravity cannot be quantized, q-gravity does not exist.)

³He Universe

A recent view with trimmed boundaries.

From Volovik JLTP (2021). Inflational expansion.

Absolute temperature

VP (PTRSA, 2023)

Equilibrium thermodynamics or thermostatics

Absolute temperature: does not depend on the material and the method of the measurement. It is not the scale, not the zero point, it is the *concept*. (Lord Kelvin, 1848. See e.g. Kardar, 2007).

Kelvin-Planck form of the second law

It is impossible to devise a cyclically operating device, the sole effect of which is to absorb energy in the form of heat from a single thermal reservoir and to deliver an equivalent amount of work.

A perpetuum mobile of second kind:

Thermostatics 2

A heat engine. Absorbs and emits heat and produces work.

Thermostatics 3

The reversible device is the most effective:

Efficiency depends only on the reservoir temperatures: $\eta(T_H, T_L)_{_{32/43}}$

Thermostatics 4

More heat engines:

Properties of efficiency:

$$\eta_1(T_1, T_3)\eta_2(T_3, T_2) = \eta_3(T_1, T_2) \rightarrow \eta(T_1, T_2) = \frac{\phi(T_1)}{\phi(T_2)} \rightarrow T = \frac{1}{\phi}.$$

Conditions: reversible process and the Kelvin-Planck form.

Variational principles for dissipative processes

Variational principles for dissipative processes

Condition: symmetry

$$\left| \hat{\Theta}(\varphi) = 0 \right|, \qquad \exists F: \textit{Dom}(\hat{\Theta}) \to \mathbb{R}, \quad \delta F(\varphi) = \hat{\Theta}(\varphi)$$

 δ derivation in a Banach (or Frechet) spaces, boundary conditions, ...

Necessary condition: $\hat{\Theta}$ is symmetric.

Many different variational principles

- Potentials: $\hat{\Theta} \circ \hat{\varphi}(\varphi) = 0$, where $\hat{\Theta} \circ \hat{\varphi}$ is symmetric
- Integrating multipliers: $\hat{T} \circ \hat{\Theta} = 0$, where $\hat{T} \circ \hat{\Theta}$ is symmetric
- Change the operator: $(\hat{\Theta}(arphi))^2 = 0$, and neglect parts
- Change the function space: Gyarmati principle, ...,

All of them are right, which one is the true?

Galilean relativistic spacetime

VP (Continuum Mechanics and Thermodynamics, 20219)

The four dimensions of Galilean relativistic space-time

Mathematical structure of Galilean relativistic space-time

- The space-time M is an oriented four dimensional vector space of the x^a ∈ M world points or events. There are no Euclidean or pseudoeuclidean structures on M: the length of a space-time vector does not exist.
- ② The *time* I is a one dimensional oriented vector space of $t \in I$ *instants*.
- 3) $\tau_a: \mathbb{M} \to \mathbb{I}$ is the *timing* or *time evaluation*, a linear surjection.
- ④ $\delta_{\bar{a}\bar{b}} : \mathbb{E} \times \mathbb{E} \to \mathbb{R} \otimes \mathbb{R}$ Euclidean structure is a symmetric bilinear mapping, where $\mathbb{E} := Ker(\tau) \subset \mathbb{M}$ is the three dimensional vector space of space vectors.
 - Simplification : space-time and time are affine spaces
 - Simplification : measure lines.
 - Abstract indexes: a, b, c, ... for \mathbb{M} , $\bar{a}, \bar{b}, \bar{c}, ...$ for S

Vectors an covectors are different

$$\begin{pmatrix} t' \\ x'^i \end{pmatrix} = \begin{pmatrix} t \\ x^i + v^i t \end{pmatrix}$$

Vector transformations (extensives):

$$\begin{pmatrix} A'\\ A'^i \end{pmatrix} = \begin{pmatrix} A\\ A^i + v^i A \end{pmatrix}$$

$$A^{\prime\alpha}B^{\prime}_{\beta}=A^{\alpha}B_{\beta}=AB+A^{i}B_{i}$$

Covector transformations (derivatives):

$$\begin{pmatrix} B' & B'_i \end{pmatrix} = \begin{pmatrix} B - B_k v^k & B_i \end{pmatrix}$$

Balances: absolute, local and substantial

$$\begin{bmatrix} \partial_a A^a = 0 \end{bmatrix} \longrightarrow u^a : D_u A + \partial_i A^i = d_t A + \partial_i A^i = 0,$$

$$(a,b,c \in \{0,1,2,3\}) \qquad u'^a : D_{u'} A + \partial_i A'^i = \partial_t A + \partial_i A'^i = 0.$$

Transformed: $(d_t - v^i \partial_i) A + \partial_i (A^i + Av^i) = d_t A + A \partial_i v^i + \partial_i A^i = 0$

$$39/43$$

Mass, energy and momentum

What kind of quantity is the energy?

- Square of the relative velocity: 2nd order tensor
- Kinetic theory: trace of a contravariant second order tensor.
- Energy density and flux: additional order

Basic field:

$$Z^{abc} = z^{bc}u^a + z^{abc}$$
: mass-energy-momentum density-flux tensor

 $a, b, c \in \{0, 1, 2, 3\}, \quad \overline{a}, b, c \in \{1, 2, 3\}$

$$z^{bc}
ightarrow \begin{pmatrix}
ho & p^b \\ p^c & e^{bc} \end{pmatrix}, \qquad z^{\bar{a}bc}
ightarrow \begin{pmatrix} j^{\bar{a}} & P^{ab} \\ P^{ac} & q^{\bar{a}\bar{b}\bar{c}} \end{pmatrix}, \qquad e = rac{e^b_{\ \ b}}{2}$$

Galilean transformation

$$Z^{\alpha\beta\gamma} = G^{\alpha}_{\mu}G^{\beta}_{\nu}G^{\gamma}_{\kappa}Z^{\mu\nu\kappa}$$
$$Z^{\alpha\beta\gamma} = \left(\begin{pmatrix} \rho & p^{i} \\ p^{j} & e^{ji} \end{pmatrix} \quad \begin{pmatrix} j^{k} & P^{ki} \\ P^{kj} & q^{kij} \end{pmatrix} \right), \quad G^{\alpha}_{\nu} = \begin{pmatrix} 1 & 0^{i} \\ v^{j} & \delta^{ji} \end{pmatrix}, \quad e = \frac{e^{i}}{2}$$

Transformation rules follow :

$$\begin{array}{rcl}
\rho' &=& \rho, \\
p'^{i} &=& p^{i} + \rho v^{i}, \\
e' &=& e + p^{i} v_{i} + \rho \frac{v^{2}}{2}, \\
j'^{i} &=& j^{i} + \rho v^{i}, \\
P'^{ij} &=& P^{ij} + \rho v^{i} v^{j} + j^{i} v^{j} + p^{j} v^{i}, \\
q'^{i} &=& q^{i} + e v^{i} + P^{ij} v_{j} + p^{j} v_{j} v^{i} + (j^{i} + \rho v^{i}) \frac{v^{2}}{2}. \\
\end{array}$$

10 O

41/43

/

Galiean transformation of energy

Transitivity:

$$e_{2} = e_{1} + p_{1}v_{12} + \rho \frac{v_{12}^{2}}{2} \\ e_{3} = e_{2} + p_{2}v_{23} + \rho \frac{v_{23}^{2}}{2}$$
 $\Rightarrow e_{3} = e_{1} + p_{1}v_{13} + \rho \frac{v_{13}^{2}}{2}$

Balance transformations

Absolute

$$\partial_a Z^{abc} = \dot{z}^{bc} + z^{bc} \partial_a u^a + \partial_a z^{\overline{a}bc} = 0$$

Rest frame

$$\begin{split} \dot{\rho} &+ \partial_i j^i &= 0, \\ \dot{\rho}^i &+ \partial_k P^{ik} &= 0^i, \\ \dot{e} &+ \partial_i q^i &= 0. \end{split}$$

Inertial reference frame

$$\begin{split} \dot{\rho} &+ \rho \partial_i \mathbf{v}^i + \partial_i j^i = \mathbf{0}, \\ \dot{\mathbf{p}}^i &+ \mathbf{p}^i \partial_k \mathbf{v}^k + \partial_k P^{ik} + \rho \dot{\mathbf{v}}^i + j^k \partial_k \mathbf{v}^i = \mathbf{0}^i, \\ \dot{\mathbf{e}} &+ \mathbf{e} \partial_i \mathbf{v}^i + \partial_i q^i + \mathbf{p}^i \dot{\mathbf{v}}_i + P^{ij} \partial_i \mathbf{v}_j = \mathbf{0}. \end{split}$$