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Local, nonlocal and weakly nonlocal

Locality in space(time)
o Local fields and local field equations. Example: (t,x), Poisson equation.

o Space integrals in the field equations: strong nonlocality.

©

Nonlocal fields: Example: f(t,x1,x2), Liouville equation, entanglement.

Weak nonlocality: extension of the field equations with higher order space
derivatives. Example: gradient fluids, Horndeski gravity.

©

Locality in time
o Locality in time. No memory. Markov process.

o Memory functionals in the field equations: strong memory. Example:
principle of fading memory.

o Multitemporal fields: science fiction?

o Weak 'nonlocality’ in time: higher order time derivatives in the field
equations. Example: second sound, delay and inertia.
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Holography
Holography <— holos+graphe = complete, whole + drawing, writing.

Optical holography
o Dennis Gabor. Reproduction of 3 dimensional information from 2
dimensional projections.

o Interferometric. Amplitude and phase. For any wavelike propagation.

E.g. ambisonic sound.

Holography in quantum field theories

o Generalisation of black hole thermodynamics. Hawking, t'"Hooft,
Susskind. Entropy is area. (Is that? Biré et al. 2018, 2020)

o Abstracted in string theory. Expected in quantum gravity.
o AdS-CFT correspondence.

o Entanglement. Unruh effect (thermodynamics!). Emergent gravity of

Verlinde.
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Classical holography |

Balance of momentum. Global form: M = —F + P.
pv+V - -P=—pVop, v+ O P* = —pdiep. (1)
Bulk and surface forces. Substantial or comoving derivative:
d=0ra+ vFOya
Convective and conductive current densities:
P conv = Pcond + pvv

Newtonian gravity (Ayp = 47 Gp):

_ _ 1 1 2
pVo =V - Pgray (V) =V (MG [vaso 2(Vw) lD

Maxwell stress tensor.

5/43



Classical holography I

Gravity is holographic
pVv+V - Py =0 < v=-Vp

Particle or field?? Test particle and integrating screens. Constant background
field or field theory? (p + pV - v =0, Ap = 47 Gp)

Holographic Euler fluids

Ideal Euler fluids: Pgyer = p(u, p)l. p is the thermostatic pressure, e.g. ideal gas.

V - Peyer =Vp=pVu+psVT

Follows from the Gibbs-Duhem relation. For isothermal processes of ANY fluid
the chemical potential is a mechanical potential. Friedmann equation

Classical holographic property

V- P(...) = pVe(...)

Constitutive (...), material property. Thermodynamics or field equation

?
dependent? iy



How to solve a constrained inequality ?
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Constitutive state space

Coleman-Noll and Liu procedures. Separation of functions and variables.
The entropy inequality is conditional:

pe + % q(e>ve) = 07
ps(e,Ve)+V-J(e,Ve) — N, Ve)(pé +V -q(e,Ve)) =
Os 1 .
— ) = — >
pave(Ve)+p(T /\)e+ >0

Liu-procedure, Lagrange—Farkas-multipliers. It follows that:

Js 1 1
- o = . — >
e(e, Ve) =0, A 7 and g(e,Ve)-V ( T(e)) 0

Constitutive state variables: (e, Ve)
— thermodynamic state variables: (e)
Process direction variables: (¢,(Ve)', V2e)
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Various theories with weakly nonlocal extensions

Classified by constitutive state spaces and constraints

o Heat conduction. Internal energy or temperature. (e, Ve, Ve, ...).
Constraint: balance of internal energy.

o Internal variables (e.g. phase fields). (¢, Vi, V2¢, ...). Tensorial order
may be arbitrary.

Constraint: evolution equation, free or balance (Ginzburg-Landau-
Alen-Cahn, Cahn-Hilliard).

o Internal variables and fluid mechanics (p, Vp,v,Vv,e, Ve, p, Vi,
V2¢)) Constraint: evolution equation, balances of mass momentum
and energy (— Newtonian gravity and more)

o Fluid mechanics. Mass, velocity and energy. (p, Vp, V2p, v, Vv,
e,Ve))

Constraints: balances of mass, momentum and energy (— quantum
mechanics and more)

o Solid mechanics. Mass, strain and energy (g, Ve, V2, ...), and more
gradients.

Constraints: kinematics, balances of mass, momentum and energy.
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Newtonian gravity

VP-Abe (Physica A, 2022)
Abe-VP (Symmetry, 2022)
Pszota-VP (arXiv: 2306.01825)
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Scalar field and hydrodynamics

s(e—p— Zﬁ’gp“”,p). Gibbs relation:
du = Tds+£2dp—de—d<g0+w) .
p 8rGp

The potential energy, ¢, the field energy and internal energy are separated.

Balances of mass, momentum, internal energy + field equation:

p+pV-v=0,
pv+V-P =0,
pe+V-q=—P:Vyv,
o ="f.

Constraints of the entropy inequality:

ps+V-J=L>0
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Gravity

Constitutive state variables: (e, Ve, p, Vp, (v),Vv, ¢, Vo, V2p)
— thermodynamic state variabless: (e, p, ¢, V)

ps+V-J=
% v,).v(L
(+5679) v (7)
+ L4 (Ap — 47 Gp)
AnGT
1 1 Vv
—|P—-pl — — — V- >
[P pl G <V<pV<p 2Vg0 chl)] _,__O

o With Liu procedure as well.
o Holographic property:

1 1
V- (pl + C (V(pVgo - §V<p . Vgpl)) =pV(u+ @)
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Nonlinear extension, static, nondissipative field

Stationary nondissipative field equation:

’0:A@747TG/)7KV99~V<,0.‘

Vacuum solutions p = 0:
1
o(r) = 2 I(r)

Spherical symmetric force field. Crossover. Apparent and real masses:

e w——
"= Kr(r+n)  r(r+n)
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Modified gravity and Dark Matter

NGC 3198 galaxy velocity curves, K= 45
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Interplay : hidden Galilean covariance
Spacetime aspects - separation of material and motion

a(petota/)
ot
It is a change of frame:

+V- (q+/)vetota/+P'V):07 — pétotal+v'(q+P'V):

o Comoving(substantial) time derivative: é = 8r - Ve,
o Galilean four-vector: (pe, q), convective and conductive current densities.
o constitutive state space: Ve is spacelike covector,

o total and internal energies: e = eror — v?/2.
Consequences

o What is comoving? Mass? Energy? Observer representations. Flow-frame.

o Total energy, kinetic energy and internal energy. Galilean relativistic
energy-momentum-mass four-tensor. Consequence: entropy production is
objective.

o Temperature is a Galilean relativistic four-vector: thermal reference frames.
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Korteweg fluids

VP-Fiilép (Proc. Roy. Soc., 2004)
VP-Kovacs (Phil. Trans. Roy. Soc. A, 2020)
VP (Physics of Fluids, 2023)
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Korteweg fluids: history

Capillarity.
Van der Waals: gradient of density is a thermodynamic variable.
Korteweg (1905): second gradient of density, pressure expansion.

Balances of mass, momentum and internal energy:
p+pV-v=0,

pv+V-P=0,
(pe+V-q=—-P:Vv.)

P=(p—abp—B(VpP) I~ 6VpoVp 7%

a, 3,7,6 are density dependent material parameters.
Instable. Second law? Eckart fluids 1948, Dunn and Serrin 1985.

17 /43



Korteweg fluids — Liu procedure

Constitutive state variables: (e, Ve, p, Vp, (v),Vv)
— thermodynamic state variables: (e, p, Vp)
Process direction: (&, (Ve)',V2e, p,(Vp),V2p,v,(V3v))

. 1
— [P —pl] : —>0

o Classical irreversible thermodynamics.

o The pressure of an ideal, non-dissipative Euler fluid:

P = p(e, p)l
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Korteweg fluids — Liu procedure

Constitutive state variables: (e, Ve, p, Vp, V?p, (v),Vv)
— thermodynamic state variables: (e, p, Vp)
Process direction: (é,(Ve),VZ2e,p,(Vp),(V23p),V3p,v,(V3v))

. 1

p 0s Os Vv
—|P - — — ) =>
Pt = (Vg ey )] T 20

o Rigorous methods are essential.

o The pressure of an ideal, non-dissipative Korteweg fluid:

2
_ r Os Os
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Perfect Korteweg fluids — holography

2
P ' Os Os
Pyx = 5 <V 8Vpl + Vaw)

o Classical holographic property, with internal energy:

, where ¢= pu _ v Apu)

V- Pk =p(Vo+ TVs) 5 BV

55(pu)]

Functional derivative. Equivalently: chemical potential, homotherm.

o Momentum balance: continuum AND point mass
pv+V -Px=p(v+Vep)=0 — v=-Vo
o Conserved vorticity follows.

o Bohm potential?
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Probabilistic Korteweg fluids — additivity

Zeroth Law of thermodynamics: separability of independent physical
systems.
Multicomponent normal fluids. Notation: p1 = p1(x1).

u(p1 + p2) = u(p1) + u(p2)-
Multicomponent probabilistic fluids:
u(p1p2) = u(p1) + u(p2).
Functional condition, pior = p1p1:
u(pot: (Vptor)?) = u (p1p2, (p2Vip1)® + (p1V2p2)?) =
u(p1, (V1p1)?) + u(p2, (V2p2)?).

Unique solution:

2
4(p. (7p)) = kinp + 5 57)

Independent Schrédinger equations for independent particles/components.
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Summary

There is a thermodynamic road to quantum physics:

’ Korteweg fluids ‘:>’ superfluids ‘:>’ quantum mechanics

o Second law and ideality conditions:
classical holography = wave-particle duality.

o Additivity = superfluids
o Density independent potential, i: = Schrodinger equation

Classical holography
o The Second Law of Thermodynamics is fundamental.

o It is applicable for fields and informative in the marginal case of zero
dissipation.

o There are real physical systems all along the road.
o It is quantisation method.
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Thank you for the attention!



VRN

"This may be true, because it is mathematically trivial."

(somebody from Princeton, according to R. Pisarski)
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What is quantum mechanics?

Early history

Q

Schrodinger, Quantisierung als Eigenwertproblem I-11., AdP (1926), Heft
4, closed 18 March 1926;

Madelung, Quantentheorie in hydrodynamischer Form, ZfP, (1926),
submitted 25 Oktober 1926;

Bohm, A Suggested Interpretation of the Quantum Theory in Terms of
"Hidden" Variables I-1l., PhysRev (1952);

de Broglie, Fényes, Nelson, Janossy, Takabayashi, Bell, Vigier,
Holland, etc...

Jackiw et al. (2004). Every non-Abelian gauge theory can be
reformulated as hydrodynamics. QCD, QGP. (See G. Torrieri | guess).
Cosmology. K. Huang, Khoury, Hossenfelder, etc... Dark matter vs
MOND: superfluidity.

Bir6-Van: Splitting the source term for the Einstein equation to classical and
quantum parts, FoP (2015). Transformed Klein-Gordon and Einstein equations.
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uids exist:

by < b

Quantum fl

Scanned with CamScanner

Vortice lines in He Il, from boundary to boundary. Donelly, 1991.
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Superfluidity

Histocical remarks and more
o Landau, ZhETP (1941).
o Bohm and Pines (1952), Gross and Pitaevskii (1961).
Dense plasmas. Critical survey of Bonitz et al. (2019).
o QGP, T. Kodama et al., stochastic gm., Jackiw et al (2004).
o G.E. Volovik: The Universe in a Helium Droplet (2003).

[

Theory notes: there is no quantisation
o There is a Hamiltonian but there is no Lagrangian.
o Hydro is an effective theory and cannot be quantised.

o (Note: Like gravity. Therefore gravity cannot be quantized, g-gravity
does not exist.)

27 /43



3He Universe

A recent view with trimmed boundaries.

parity violation, chiral fermions, Planck physics
Casimir forces, quantum friction, neutrino oscillations

Witten superconducting string
nexus, soft core string
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‘onstant, q-theory i . . spin, isospin, string theory flat|
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rdial magnetic field . ¢ 5| SEFINGS || VACUUM | 2.1 dectrodynami 1/2-vortex, frac
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otropic dark matter hioh-T & chiral Andreev-iajoran:
- oyt : . 1gh- chiral|vortex dynamics, spectra
y textures & :mr.\gs ngl’l Energy o )
ion, matter creation cosmology| . super- intrinsic QHE, spin & F(
er branes Physms conductivity |skyrmion & vortex statis!
s ) 1D, 2D systems Abrikosov
gravity f, m Chern nun
acuul Condensed =
rm field . Gravit top. insulators| higher ord
gravity avity 2
. Matter semimetals | Dirac line,
Dm.iec'tu:_, synthetic g
principle magnetism | spintronics,
rmzfl an:)muly black Q CD Plasma Phenome spin currents, spi
n signature h l Kyrmioni
. oles . nology skyrmionics, magn
.event hor izon PhySlCS nixture of condensa
Unruh effectsy————— BEC of quas
lull'-ll'l il;sllnh_ilil,v “‘;:::‘sm quark | e hydrodynamics | gy rmion,
ehind horizon . .
| AT matter]) physics| |transitions W random Velocity indep
of neutron star guark condensate anisotropy gener:

tices, glitches  Nambu--Jona-Lasinio . Nuclei vs - quantum Lifshitz 1
w instability Vaks..Larkin 3He droplet " phase transitions

color superfluidity Sh_E“ model  p.space topology

From Volovik JLTP (2021). Inflational expansion.

Larkin- Imry-Ma states
classes of random matrices
skyrmion glass, Weyl glass
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Absolute temperature

VP (PTRSA, 2023)
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Equilibrium thermodynamics or thermostatics

Absolute temperature: does not depend on the material and the method of
the measurement. It is not the scale, not the zero point, it is the concept.
(Lord Kelvin, 1848. See e.g. Kardar, 2007).

Kelvin-Planck form of the second law

It is impossible to devise a cyclically operating device, the sole effect of
which is to absorb energy in the form of heat from a single thermal
reservoir and to deliver an equivalent amount of work.

A perpetuum mobile of second kind: w
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Thermostatics 2

A heat engine. Absorbs and emits heat and produces work.
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Thermostatics 3

The reversible device is the most effective:

Efficiency depends only on the reservoir temperatures: n( Ty, T;) N



Thermostatics 4

More heat engines:

T T
Q
Q
W,
T, Q C ) W,+ W,
Q
W, Q
Q
T T

Properties of efficiency:

T Tm(To, T) = (T2 Ta) = (T Ta) = S

Conditions: reversible process and the Kelvin-Planck form.

1
=3
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Variational principles for dissipative
processes
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Variational principles for dissipative processes

Condition: symmetry

A A

6(¢) =0, 3F : Dom(6) - R, 6F(p) = O(y)

d derivation in a Banach (or Frechet) spaces, boundary conditions, ...

Necessary condition: © is symmetric.

Many different variational principles
o Potentials: © o $(p) = 0, where & o $ is symmetric
o Integrating multipliers: 7 0 © = 0, where T 0 © is symmetric
o Change the operator: (6())? = 0, and neglect parts
o Change the function space: Gyarmati principle, ...,

All of them are right, which one is the true?
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Galilean relativistic spacetime

VP (Continuum Mechanics and Thermodynamics, 20219)

36 /43



The four dimensions of Galilean relativistic space-time

M

S

.
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Mathematical structure of Galilean relativistic space-time

@ The space-time M is an oriented four dimensional vector space of the
x? € M world points or events. There are no Euclidean or
pseudoeuclidean structures on M: the length of a space-time vector
does not exist.

® The timel is a one dimensional oriented vector space of t € I instants.

®

T, - Ml — T is the timing or time evaluation, a linear surjection.

@ 455 :E xE — R®R Euclidean structure is a symmetric bilinear
mapping, where E := Ker(7) C M is the three dimensional vector
space of space vectors.

o Simplification: space-time and time are affine spaces
o Simplification: measure lines.
o Abstract indexes: a, b, c, ... for M, 3, b,¢,... for S
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Vectors an covectors are different

M S t'\ t
Xll - XI + Vlt

Vector transformations (extensives):

T / <,f\\’/'> - <A" fva)

Covector transformations (derivatives):

A®Bly = A*Bs = AB + A'B;

(B’ B//) = (B — Bkvk B,-)
Balances: absolute, local and substantial
—  u?: DA+OA = dA+9A =0,

(a,b,c€{0,1,2,3}) U2 DA+ AT = 8A+9AT =0.
Transformed: (d; — v/0;)A + 0;(A" + Av) = di A + Adjv/ + 9;A" = 0
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Mass, energy and momentum

What kind of quantity is the energy?
o Square of the relative velocity: 2nd order tensor
o Kinetic theory: trace of a contravariant second order tensor.

o Energy density and flux: additional order

Basic field:

Zabc _ Zbcua + Zabc .

mass-energy-momentum density-flux tensor

a,b,ce€{0,1,23}, 3 b,cec {123}

b a ab b
b p P ab J P _ b
Fas <pc ebc> ) ¢ — (Pac q556> ) €= 2
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Galilean transformation

7" = GGl Grzmn

i -k ki i i
apy _ (P P, Jje P o_ (1 0 )
ro((5 2) (B B) oo D) o

Transformation rules follow:

Po=p
pl o= p'+pv,
2
r_ i, v
€ - 6'+'p VI%_llzfa
it = eV
P = P pvivi+ i piv,
2
. . . .. , , . .V
q" = d+e' + Pl pviv 4+ (4 pv) <
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Galiean transformation of energy

Transitivity:
Vi
€ = e + p1viz + p>5* V2
— e =€+ pL1vi3 +P¥

2
V.
&3 = & + pava3 + p5°

p2 = p1 + pvi2, Vi3 = vi2 + V23
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Balance transformations

Absolute
aazabc _ Z-bc + Zbcaaua + 8225bc —0

Rest frame

p+8l./l = O)
P+ oP* = 0,
é+0iq = 0.

Inertial reference frame

p+poivi +9;j1 = 0,

pi+pi0kvk+8kPik+pVi+jk8kvi _ Oi

é+ediv' +0;,q' + p'vi + Pigiy; = 0.
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