Uilener

Jakovác Antall

Department of Computational Sciences

Introduction

Recent impressive developments in Al

(5) OpenAI

ChatGPT4.0

- Text generation: chatGPT, autoGPT, bing AI, bard AI, etc.
- Image generation: midjourney, thispersondeosnotexists, Dall-E, ...
- Al doomsday?
- Intelligent and useful tools, BUT heuristic, improvising, "lying"
- Why do they work so well, and why do they fail so stupidly?

Introduction

Human intelligence is not a monolithic entity:

Cattell-Horn-Carroll theory
Fluid intelligence: reasoning, analysis

Crystallized intelligence: use acquired knowledge

Memory and learning

Modes of human thinking

Categorization in cognitive psychology: (Daniel Kahneman)

- System 1:

\rightarrow fast, automatic, intuitive, no conscious awareness, no control, error-prone
\rightarrow ideal for fast, accurate responses (e.g. car driving, playing table tennis ...)
- System 2:
* slower, conscious, deliberate, controlled, can be checked and re-iterated
\rightarrow ideal for contemplation, understanding

Introduction

Human intelligence is not a monolithic entity, we use:

- all parts of the intelligence
- System1 and System2

unlike in AI models

- We tend to think that all parts of IQ are present (cf. ELIZA, chatGPT \rightarrow doomers)
- The performance of AI depends on the task we give
- What was the question, if the answer is human intelligence? we do not know...
\rightarrow Turing's definition: deceiving observers
\rightarrow Classification task: main stream AI solutions: System1
\rightarrow How to represent System2? scientific understanding

Turing's definition of intelligence

- Intelligent: indistinguishable from human in discussion (Turing 1950)
- Task: create a chatbot reacting to questions like humans do
- Famous programs:
\rightarrow ELIZA (Joseph Weizenbaum, 1960's, MIT)
- Eugene Goostman (13-year-old Ukrainian boy; 33\% passed Turing test in 2014)
- Not really intelligent, but mislead humans to think they talk with an intelligent actor.

Classification task

- Intelligent: classifies like humans do - we shall present the correct solution
- Mathematical background: probabilistic interpretation, Bayesian analysis, training, supervised learning
- Technology: plenty of ideas (DNN, CNN, ResNet, transformers, GAN, VAE, ...)
- Most successful AI uses this method (classifiers, generators)

Classification task

- Advantages:
\rightarrow Very fast, effective
- Good interpolation properties
- Disadvantages (apart from technical ones)

"panda"
57.7\% confidence

"gibbon" 99.3\% confidence
\rightarrow Slow training: needs a lot of data and uses a large amount of parameters
\rightarrow No control over the mistakes (c.f. adversarial attacks)
\rightarrow Input \rightarrow output is a continuous function, can not train with very unbalanced data (e.g. can not have a class "no cat images")
\rightarrow Specific \rightarrow catastrophic forgetting: classification outputs are interdependent
- All this corresponds to the System1 way of thinking!

Understanding in science

How does the scientific understanding work?

- Make all possible observations: reveal interactions, microstates

- The "interesting" measurements are much fewer ("IR physics", macrostates)
- There are interactions that do not influence the interesting physics (irrelevant)
- To build a model: take into account only the independent relevant interactions (Ockham's razor)
- Relevant interactions: constants over the microstates (particle number, magnetization)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
e scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Make all possible observations: reveal interactions, microstates

- The "interesting" measurements are much fewer ("IR physics", macrostates)
- There are interactions that do not influence the interesting physics (irrelevant)
- To build a model: take into account only the independent relevant interactions (Ockham's razor)
- Relevant interactions: constants over the microstates (particle number, magnetization)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Make all possible observations: reveal interactions, microstates

- The "interesting" measurements are much fewer ("IR physics", macrostates)
- There are interactions that do not influence the interesting physics (irrelevant)
- To build a model: take into account only the independent relevant interactions (Ockham's razor)
- Relevant interactions: constants over the microstates (particle number, magnetization)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" measurements are much fewer ("IR physics", macrostates)
- There are interactions that do not influence the interesting physics (irrelevant)
- To build a model: take into account only the independent relevant interactions (Ockham's razor)
- Relevant interactions: constants over the microstates (particle number, magnetization)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" measurements are much fewer ("IR physics", macrostates)
- There are interactions that do not influence the interesting physics (irrelevant)
- To build a model: take into account only the independent relevant interactions (Ockham's razor)
- Relevant interactions: constants over the microstates (particle number, magnetization)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
e scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phenomena are much fewer (context)
- There are interactions that do not influence the interesting physics (irrelevant)
- To build a model: take into account only the independent relevant interactions (Ockham's razor)
- Relevant interactions: constants over the microstates (particle number, magnetization)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phanomena are much fewer (context)
- There are interactions that do not influence the interesting physics (irrelevant)
- To build a model: take into account only the independent relevant interactions (Ockham's razor)
- Relevant interactions: constants over the microstates (particle number, magnetization)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phanomena are much fewer (context)
- There are facts that do not influence the interesting phenomena (irrelevant)
- To build a model: take into account only the independent relevant interactions (Ockham's razor)
- Relevant interactions: constants over the microstates (particle number, magnetization)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phanomena are much fewer (context)
- There are facts that do not influence the interesting phenomena (irrelevant)
- To build a model: take into account only the independent relevant interactions (Ockham's razor)
- Relevant interactions: constants over the microstates (particle number, magnetization)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phanomena are much fewer (context)
- There are facts that do not influence the interesting phenomena (irrelevant)
- For understanding a phenomenon we shall keep the independent relevant facts (Ockham's razor)
- Relevant interactions: constants over the microstates (particle number, magnetization)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phanomena are much fewer (context)
- There are facts that do not influence the interesting phenomena (irrelevant)
- For understanding a phenomenon we shall keep the independent relevant facts (Ockham's razor)
- Relevant interactions: constants over the microstates (particle number, magnetization)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phanomena are much fewer (context)
- There are facts that do not influence the interesting phenomena (irrelevant)
- For understanding a phenomenon we shall keep the independent relevant facts (Ockham's razor)
- Relevant facts: are constants over the context (laws)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phanomena are much fewer (context)
- There are facts that do not influence the interesting phenomena (irrelevant)
- For understanding a phenomenon we shall keep the independent relevant facts (Ockham's razor)
- Relevant facts: are constants over the context (laws)
- changing the "interesting" physics \rightarrow change relevant interactions (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phanomena are much fewer (context)
- There are facts that do not influence the interesting phenomena (irrelevant)
- For understanding a phenomenon we shall keep the independent relevant facts (Ockham's razor)
- Relevant facts: are constants over the context (laws)
- changing the context \rightarrow change the relevant facts (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phanomena are much fewer (context)
- There are facts that do not influence the interesting phenomena (irrelevant)
- For understanding a phenomenon we shall keep the independent relevant facts (Ockham's razor)
- Relevant facts: are constants over the context (laws)
- changing the context \rightarrow change the relevant facts (renormalization)
- scaling \& dimensional analysis: if macrostates are much bigger than microstates, then there remains just a few relevant interactions
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phanomena are much fewer (context)
- There are facts that do not influence the interesting phenomena (irrelevant)
- For understanding a phenomenon we shall keep the independent relevant facts (Ockham's razor)
- Relevant facts: are constants over the context (laws)
- changing the context \rightarrow change the relevant facts (renormalization)
- usually we need take into account a lot of relevant facts!
the world is simple using an appropriate language

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phanomena are much fewer (context)
- There are facts that do not influence the interesting phenomena (irrelevant)
- For understanding a phenomenon we shall keep the independent relevant facts (Ockham's razor)
- Relevant facts: are constants over the context (laws)
- changing the context \rightarrow change the relevant facts (renormalization)
- usually we need take into account a lot of relevant facts!

Generalizing scientific understanding

Almost all steps of the scientific method can be generalized!

- Collect all available "facts"

- The "interesting" phanomena are much fewer (context)
- There are facts that do not influence the interesting phenomena (irrelevant)
- For understanding a phenomenon we shall keep the independent relevant facts (Ockham's razor)
- Relevant facts: are constants over the context (laws)
- changing the context \rightarrow change the relevant facts (renormalization)
- usually we need take into account a lot of relevant facts!

Generalizing scientific understanding

Generalizing scientific understanding

point mechanics

5 relevant

Science

Few relevant quantities identifiable on-by-one exact laws

Ising model
3 relevant

> natural environment ? relevant? irrelevant
geometric images
face recognitions
~ 10-100 irrelevant

Generalizing scientific understanding

Entropy of the intelligence

Best understanding: we use the minimal number of facts (Ockham's razor) Is there a universal measure to decide, how good a given representation is? TS Biró, AJ, Universe 8 (1), 53; AJ, A Telcs, Entropy 24 (9), 1313

- Simplest case: context $=C$ subset, binary measurement (fact): ξ_{i} (state) $\in\{0,1\}$
- probability distribution: $\quad p_{C}\left(\xi_{i}=\sigma_{i}\right)=\frac{\left|\xi_{i}^{-1}\left(\sigma_{i}\right) \cap C\right|}{|C|}$
- representation entropy: $\quad S_{\text {repr }}=\sum_{i=1}^{N}\left[\sum_{\sigma \in 0,1} p_{C}\left(\xi_{i}=\sigma_{i}\right) \log _{2} p_{C}\left(\xi_{i}=\sigma\right)\right]$
- properties:
$\rightarrow S_{\text {repr }} \geq H$ Shannon entropy
\Rightarrow equality iff independent facts, least number of relevant facts
\rightarrow we can use different individual entropy: $S_{\text {repr }}=\sum_{i=1} S\left(p_{C}\left(\xi_{i}\right)\right)$

Entropy of the intelligence

- implementation for learning:
\rightarrow instead of train with human annotated datasets, we shall seek facts that are constant over elements of contexts (laws)
* ensure independence

- practical approach: law-based feature transformation
\rightarrow find laws in some functional space (e.g. linear functions)
\rightarrow collect laws for different elements of the context
\rightarrow for a new state use the best law \rightarrow classification

Relevance based intelligence

- Advantages:
\rightarrow control over mistakes: several laws
* can be used with unbalanced data
\rightarrow no forgetting: laws separate class elements from not class elements, no interdependence between laws
\rightarrow fast training: needs fewer data and less parameters than training
- Disadvantages (apart from technical ones)
\Rightarrow application can be slow for a lot of laws (parallelization necessary)
- These are characteristic for System2 way of thinking

Application: ECG analysis

- Goal: classify heart beats into normal and ectopic
- ECG signal: cleaning, standardizing
- Mehtod: prepare test, validation and training sets

\rightarrow Find linear laws for the QRS complex (11 leg embedding, universal laws)
\rightarrow Train a classifier on the results (KNN, RF, SVM)
\rightarrow Results depend on several factors, best result SVM: 94.3\% (close to state-of-art results)
\rightarrow More data could help to improve accuracy
- Can be used in a non-annotated dataset (self annotation)

Application: AReM database

MT Kurbucz, P Pósfay, AJ, Scientific Reports 12 (1), 18026

- Activity Recognition system based on Multisensor data fusion (AReM) Data Set
$\rightarrow 7$ motion classes (bending, lying, cycling,etc.)
$\rightarrow 3$ sensor data $\rightarrow 6$ features (mean and variance)
$\rightarrow 88$ time series (instances), 480 values in each
- Mehtod: LLT (Linear Law based feature Transformation)

\rightarrow Determine the laws for each instances and channels in the training sets
\rightarrow Apply them to the test series, take temporal average/variance \Longrightarrow features
\Rightarrow Train a classifier on the results (KNN, DT, SVM)
\rightarrow KNN provides error-free classification

Nonlinear laws

AJ, MT Kurbucz, P Pósfay, New Journal of Physics 24 (7), 073021

- Generalization: input are not directly the embedded data, but pre-trained features

- F_{m} can be represented by (deep) neural network
- Extreme learning: the exact form of F_{m} does not matter
- Reconstruction of mechanical motions: 3-leg embedding (discrete Newton-equations)
- Chaoticity, stability \square recursion to reconstruct motion

Stochastic processes

MT Kurbucz, P Pósfay, A Jakovác, arXiv preprint arXiv:2201.09790

- Markov chains: stochastic process where $\quad P^{(n+1)}(x)=\sum_{y} T_{x, y}^{(n)} P^{(n)}(y) \quad \longrightarrow \quad P^{(n+1)}=T P^{(n)}$
- In equilibrium (steady state) no n dependence, for equilibrium distribution: $P=T P$
- 2-variable correlation functions: $\left\langle f\left(x_{n}, x_{n+k}\right)\right\rangle=\operatorname{Tr}\left(F T^{k}\right)$ where $F_{x y}=f(x, y) P(x)$
- These satisfy linear laws: $\sum_{k}\left\langle f\left(x_{n}, x_{n+k}\right)\right\rangle w_{k}=0$ if $\sum_{k} w_{k} T^{k}=0$ characteristic polynomial
- Dimensionality of the Markov process can be determined from the laws

Conclusions

The question/task we want to solve determines the possible answers

- Turing's intelligence definition: programs deceiving humans
- Classification task
\rightarrow Probabilistic systems, specific tasks
\rightarrow Method of development: training
\rightarrow Slow training, fast operation \rightarrow System 1
- Representation task
\rightarrow Structured systems, generic tasks, context
\rightarrow Method of development: finding relevant features, laws
\rightarrow Fast learning, slower operation \rightarrow System 2

The end

