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Outline.

• Introduction. Brief overview of the possible theoretical descriptions of 
photon–electron (or other charged particle) interaction.

• Relativistic dynamics of a charged particle in a strong laser field in 
vacuum. Analogies between the „figure–8–motion” and the Kepler–
Coulomb problemCoulomb problem. 

• Relativistic motion of a charged particle interacting with a strong laser 
field in a plasma Comparison of the high-harmonic spectrum in vacuumfield in a plasma. Comparison of the high-harmonic spectrum in vacuum 
and in an underdense plasma.

• Dirac particle in external electromagnetic plane waves in vacuum or in Dirac particle in external electromagnetic plane waves in vacuum or in 
a plasma. Optically induced band structure and exceptional solutions.

• Dirac particle interacting with quantized radiation fields in vacuum. p g q
Exact solutions, and considerations on squeezing and ‘aberration’ in 
quantum phase space of the photon.

• Summary and outlook.



Possible description of (higher-order) processes taking place during the interaction of 
electrons (or other charged particles) and photons The main purpose of the talk is to illustrate

PHOTON Trajectory, Ray Field Quantized Field 

electrons (or other charged particles) and photons.The main purpose of the talk is to illustrate 
the  interrelations and differences  of some exact descriptions at various levels.
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Exact trajectories of a relativistic charged particle interacting 
with a strong laser field in vacuum. Formal relations between 
the „figure–8–motion” in a plane wave electromagnetic 
radiation and the Kepler–Coulomb central force problem.p p

))(()())((/)(0 tttdettdttdmd BrEr






)),(()()),((
/]/)([1

)(
22

0 tt
dtc

tte
cdttddt

rBrE
r







 



Classical considerations for a relativistic free electron. In vacuum, the 
argument of the e.m. plane wave at the electron’s position is 
proportional to the proper time of the electron. The „figure–8 motion”.
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Along the polarization x-direction one receives formally a Newton equation in dipole approximation.
By solving for the x- and y-components, the z-component (the longitudinal component, driven by the 
v × B force term) also satifies a Newton-like equation in dipole approcimation (mere -dependence).
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Illustration of the „figure–8 motion” for intensity parameter 0x = 2 
[  1 24 I 16 1018 W / 2]

0
The Figure -8 motion  m = 2 

[ 0 = 1.24 ;  I0 = 16 × 1018 W / cm2]. 
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Mathematical connection between the „figure–8–motion” in a plane wave 
electromagnetic radiation and the Kepler–Coulomb central force problem. 1.
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Intensity-dependent  frequency down-shift,
Rec rrence of the elocitRecurrence of the velocity.
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Recurrence of the velocity and acceleration.     [ ‘collaps’ and ‘revival’. ]



Relativistic motion of a charged particle interacting with a 
strong laser field in a plasma. Comparison of the high-g g
harmonic spectrum in vacuum and in an underdense plasma.



For a relativistic free electron in a plasma, the argument of the e.m. plane wave at 
the electron’s position is not any more proportional to the proper time of thethe electron s position is not any more proportional to the proper time of the 
electron, but a complicated function.

In vacuum
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Temporal evolution of the electron’s acceleration in plasma. 
[Comparison with the vacuum case.][Comparison with the vacuum case.]
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Comparison of the acceleration (‘HHG’) spectra in vacuum and in 
plasmaplasma.

10/ 1.0/ 0  p

Varró S, Klein-Gordon radio and laser acceleration of particles. Part I-II. ELI-ALPS Seminars ;  03, 17  May 2019, Szeged



Dirac particle interacting with external electromagnetic plane 
waves in vacuum or in a plasma. The Volkov states and 
beyond. Optically induced band structure and exceptional 
solutions.



Volkov states [ 1935 ]  One of the main tool for long  Volkov states [ 1935 ]. One of the main tool for long... 
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Wolkow D M, Über eine Klasse von Lösungen der Diracschen Gleichung. Zeitschrift für Physik 
94, 250-260 (1935). [Application to strong-field and multiphoton processes: from ~1960..]



The Gordon-Volkov states are modulated de Broglie plane 
waves. 
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E.g. Mathieu–type solutions. FEL. )/( cyntxk   E.g. Mathieu type solutions. FEL.
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[ Figure taken from Arscott F M, Periodic differential equations (Pergamon Press, Oxford, 1964) p.123. ] . Nikishov 
& Ritus (1967), Nikishov (1970), Narozhny & Nikishov (1974), Becker (1977), Fedorov, McIver … FEL theories.



Exceptional solutions in plasma. )/( cyntxk   Exceptional solutions in plasma. 
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Exceptional solutions in a plasma medium. p p

Double peak structure. Single peak structure. Oscillatory spectrum.

Dirac Klein-Gordon

[1] S. V. , New exact solutions of the Dirac equation of a charged particle interacting with an electromagnetic plane wave in a 
medium. Laser Physics Letters 10 (2013) 095301, E-print: arXiv:1305.4370 [quant-ph].

[2] S. V., A new class of exact solutions of the Klein-Gordon equation of a charged particle interacting with an electromagnetic 
l i di L Ph i L 11 (2014) 016001 E i t Xi 1306 0097 [ t h]plane wave in a medium. Laser Physics Letters 11 (2014) 016001, E-print: arXiv:1306.0097 [quant-ph].



Very large contrast charge density modulation.
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‘Void regions’ in the centre of the cycle. [ This seems to be a 
‘Quantum bubble’? ...]



(Longitudinal) plasmon absorption along the (transverse) polarization (electric 
field) direction induces a high contrast charge modulation along the propagationfield) direction induces a high – contrast charge modulation along the propagation 
direction. [Ince polynomials with an exponential envelope]
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Dirac particle interacting with the quantized radiation field in 
vacuum. Exact solutions, and considerations on squeezing g
and ‘aberration’ in quantum phase space of the photon.



Quantized description of nonlinear Compton scattering (HHG) beyond the 
semiclassical description (1981) The generalization of the Klein Nishina formulasemiclassical description (1981). The generalization of the Klein–Nishina formula. 
The effect of depletion of the laser field; e.g. altered kinematics (spectrum) !

The calculation of the nonlinear Compton process was based on the

nDSeuaakg ngi
Q

ii
E 

 ˆˆ)eˆeˆ(1 )]([ rkQrkrk
P










p p
Exact solutions for the ‘Dirac electron + quantized e.m. radiation mode’ system [1-3]:

nDSeuaa
Qk

g QE  )ee(
2

1,P 







2

22
21 2

2
00

2
00






sinn

n C
n














0

0

n
nn 



22C




 ‚depletion factor’ [1-3]

nb  )(1

The generalization of the Klein–Nishina formula (complete depletion of the photon mode):

nb
n

av
n

fi e
n

nb
n

nt 
















!
)()(42

4
1|| 2

0

02)( εε






22
02

1 |ˆ| εk  b



The matrix elements of the squeezing operator between photon number 
eigenstates. Expression in terms of classical Gegenbauer polynomials.
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Varró S, Coherent and incoherent superposition of transition matrix elements of the squeezing operator.  New Journal of Physics 
24, 053035  (2021). E-print: arXiv: 2112.08430 [quant-ph] .  29th Int. Las. Phys. (LPHYS’21).  J. Phys. Conf. Ser. 2249 012013 (2022).



Transformation properties of the ‘disentengling operators’Transformation properties of the disentengling operators

Exact solutions for the ‘Dirac electron + quantized e.m. radiation mode’ system in 
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The expansion coefficients of the Dirac stationary states, i.e. The photon statistics is, at the same time, are the 
transition probabilities in the parametric down-conversion; generation of entangled photon pairs.



Photon statistics of the Dirac solution is essentially the same as the TransitionPhoton statistics of the Dirac solution is essentially the same as the Transition 
probabilities in the parametric down-conversion; generation of entangled photon 
pairs. Connection with the Zernike polynomials.
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[1] Varró S : Regular phase operator and SU(1,1) coherent states of the harmonic oscillator.g ( )
Physica Scripta 90 (7) (2015) 074053. [2] Varró S, Coherent and incoherent superposition of transition matrix elements of the 
squeezing operator. New Journal of Physics 24, 053035 (2022).



Transition probabilities in the parametric down-conversion; generation of 
entangled photon pairs. Connection with the Zernike polynomials.

[We used the same normal ordering as in Ref. [2], but now with the SU(1,1)  generators related to the quantum  
phase operator problem found in Ref. [1], and received similar hypergeometric functions as in Ref. [2]. These 
hypergeometric functions are in fact Jacobi polynomials.]
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Illustrations of the photon number distributions in parametric down-conversion. 
Special case =0, i.e. n2 = n1 = n (~’Zernike polynomial distributions’). n = 0, 1.

migUm )e(10)( 2 

Yield for n=0 Bose 
distribution:

.)1( 22 m

The left figure refers to the spontaneous process. The right figure refers to the initial n = 1.



Illustrations of the photon number distributions in parametric down-conversion. 
Special case =0, i.e. n2 = n1 = n (~’Zernike polynomial distributions’). n = 0, 1.

The left figure refers to the initial n = 2. The right figure refers to the initial n = 3.



Born M and Wolf E, Principles of Optics (Cambridge University Press, Cambridge, 2002).
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Born M and Wolf E, Principles of Optics (Cambridge University Press, Cambridge, 2002).

Born M and Wolf E, Principles of Optics (Cambridge University Press, Cambridge, 2002).



Some graphical illustrations of the Zernike polynomials. [Niu K and Tian C (2022)] 

Figure copied from [3] Niu K and Tian C 2022 Zernike polynomials and their applications. Journal of Optics 
24, 123001 (2022).



Aberration of down-conversion probability in the generation of 3 photon pairs. 
Special case =0, i.e. n2 = n1 = n (~’Zernike polynomial distributions’). n = 0, 1.

The left figure refers to the spontaneous process. The right figure refers to the initial n = 1.



Aberration of down-conversion probability in the generation of 3 photon pairs. 
Special case =0, i.e. n2 = n1 = n (~’Zernike distributions’). Superposition:n = 0, 1, 
2.

The left figure refers to the spontaneous process. The right figure refers to the initial n = 1.



Aberration of down-conversion probability in the generation of 3 photon pairs. 
Special case =0, i.e. n2 = n1 = n (~’Zernike distributions’). Superposition:n = 1, 2, 
3.

The left figure refers to the spontaneous process. The right figure refers to the initial n = 1.



Summary

• Relativistic dynamics of a charged particle in a strong laser field in 
A l i b t th fi 8 ti ” d th K lvacuum. Analogies between the „figure–8–motion” and the Kepler–

Coulomb problem. 

• Relativistic motion of a charged particle interacting with a strong laser• Relativistic motion of a charged particle interacting with a strong laser 
field in a plasma. Comparison of the high-harmonic spectrum in vacuum 
and in an underdense plasma.

• Dirac particle in external electromagnetic plane waves in vacuum or in 
a plasma. Optically induced band structure and exceptional solutions.

• Dirac particle interacting with quantized radiation fields in vacuum. 
Exact solutions, and considerations on squeezing and ‘aberration’ in 
quantum phase space of the photon.q p p p

• Summary and outlook.
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Interaction of relativistic charged particles with strong laser fields in vacuum or in a plasma environment.

Sándor VarróSándor Varró
Wigner FK, ELKH, Budapest; ELI-ALPS, Szeged

We present a comparative study of the exact solutions of both the classical and the quantum mechanical equations of motion 
of charged particles interacting with a laser field of arbitrary intensity. The well-known exact solutions in vacuum are
represented by the figure 8 motion and the Volkov states Here we point out the surprising mathematical connection betweenrepresented by the figure-8 motion and the Volkov states. Here we point out the surprising mathematical connection between
the figure-8 motion and the classical Coulomb-Kepler trajectories [1]. In an underdense plasma the particle motion depends on 
the stability charts of Mathieu or Hill equations. There are also exceptional solutions labelled by two integer numbers, which 
correspond to discrete particle momentum and energy spectra [2], even in the considered external field approximation for the 
laser field. These solutions correspond to very high contrast, propagating charge density modulations, which may perhaps be 
relevant for laser acceleration of particles By going beyond the external field approximation the Dirac (Klein-Gordon orrelevant for laser acceleration of particles. By going beyond the external field approximation, the Dirac (Klein Gordon or 
Schrödinger) equation of the joint system of a charged particle interacting with quantized radiation modes in vacuum can also
be solved exactly in various cases. The photon part of the single-mode stationary states are squeezed (coherent) number 
states [3], whose photon statistics has been determined quite recently in terms of Gegenbauer polynomials [4]. On the basis of 
the recently found exact solutions of the equation of motion, finally we discuss the interaction of a charged Dirac particle 
interacting with two co-propagating circularly polarized quantized modes. In this analysis entangled photon pairs naturallyinteracting with two co propagating circularly polarized quantized modes. In this analysis entangled photon pairs naturally 
appear, and we will show that in a special case the derived probability amplitudes of the distribution of these pairs reduce to 
the Zernike functions, which are well-kown in the classical theory of aberration in optical imaging [5]. Thus, it is justified to 
introduce the concepts of aberration and Zernike moments on quantum phase space, which may give a new aspect in the non-
perturbative theoretical study of high-order and parametric processes in laser-matter interactions.

References.
[1] Varró S; Intensity effects and absolute phase effects in nonlinear laser-matter interactions. In Laser Pulse Phenomena and 
Applications. (Duarte F J (Ed.); Rijeka, InTech, 2010). Ch. 12, pp 243-266.
[2] Varró S, New exact solutions of the Klein-Gordon and Dirac equations of a charged particle propagating in a strong laser 
field in an underdense plasma. Nuclear Instruments and Methods in Physics Research A  740 (2014) 280-283.
[3] Varró S, Quantum optical aspects of high-harmonic generation. Photonics 8, 269 (2021).
[4] Varró S, Coherent and incoherent superposition of transition matrix elements of the squeezing operator. New Journal of 
Physics 24, 053035 (2022). 
[5] Born M and Wolf E, Principles of Optics (Cambridge University Press, Cambridge, 2002). 



Classical considerations for a relativistic free electron. In vacuum, the 
argument of the e.m. plane wave at the electron’s position is 
proportional to the proper time of the electron. The „figure–8 motion”.
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Along the polarization x-direction one receives formally a Newton equation in dipole approximation.
f (

1

2xd  )()(2  dydxezd

By solving for the x- and y-components, the z-component (the longitudinal component, driven by the 
v × B force term) also satifies a Newton-like equation in dipole approcimation (mere -dependence).
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Mathematical connection between the „figure–8–motion” in a plane wave 
electromagnetic radiation and the Kepler–Coulomb central force problem. 1.
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Laser field in a homogeneous underdense plasma: 
Lánczos-Proca vector boson. „Massive photon”
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Lánczos C, Die tensoranalytischen Beziehungen der Diracschen Gleichung. Zeitschrift für Physik 57, 447 (1929). 
Proca A, Sur la théorie ondulatoire desélectrons positifs et négatifs. J. Phys. Radium 7, 347 (1936).



Gordon’s solutions [ 1927 ]

Varro_ECLIM_2010

Gordon W, Der Comptoneffekt nach der Schrödingerschen Theorie. Zeitschrift für Physik 
40, 117-133 (1927). [ Application to strong-field: From ~1960..]



Volkov’s solutions [ 1935 ]

Ü

Varro_ECLIM_2010

Wolkow D M, Über eine Klasse von Lösungen der Diracschen Gleichung. Zeitschrift für 
Physik 94, 250-260 (1935). [Application to strong-field: From ~1960..]



Gordon-Volkov states (1927, 1935): Exact solutions of the Klein–Gordon and Dirac equations of an 
electron in an arbitrary intense ‘laser field’ propagating in vacuum. After ~ 80 years; the only new 
exact, closed form solutions for the ‘monochromatic problem’ in a medium [S. V. (2013, 2014)]. , p [ ( , )]
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Varró S, Klein-Gordon rádió...  ATOMKISzeminárium 03 Oct 2019.



Diagonalization: elimination of the p.A and A2 terms. The appearance of 
the „quantized space-translated potential”.the „quantized space translated potential .
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Varró S, Quantum optical aspects of high-harmonic generation. Photonics 2021, 8 (7), 269 
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a ó S, Qua tu opt ca aspects o g a o c ge e at o oto cs 0 , 8 ( ), 69
(2021). [https://doi.org/10.3390/photonics8070269]. Special Issue “Quantum Optics in Strong Laser Fields”. The 
elimination technique is the same as in Bergou J and Varró S, J. Phys. A 14, 1469 (1981), ibid. 14, 2281 (1981) 
used for free Schrödinger and Dirac electrons, resp.



Varró S, Klein-Gordon radio and attosecond light pulses. SZFI-Wigner Seminar 07 May 2019.



Irreducible representation of the Lorentz group.



Similar SU(1,1) structure of the degenerate and non-degenerate interaction.
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Zernike polynomials from Gram-Schmidt orthogonalization. [ [1] Lakshminarayanan and Fleck (2011) ] 
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We have seen that the Zernike polynomials came out from the down-conversion matrix elements through the 
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special cases of the Jacobi polynomials:

The table has been copied from [1] Lakshminarayanan V and Fleck A 2011 Zernike polynomials: a guide. 
Journal of Modern Optics, 58 (7), 545-561 (2011).



Correlations of photons stemming from parametric down-conversion. 

Figure copied from: E. Brambilla, A. Gatti, M. Bache, and L. A. Lugiato(2004) Simultaneous near-field and far-field spatial quantum 
correlations in the high-gain regime of parametric down-conversion. PHYSICAL REVIEW A 69, 023802 ~2004!



Some graphical illustrations of the Zernike polynomials. [Niu K and Tian C (2022)] 

Figure copied from [3] Niu K and Tian C 2022 Zernike polynomials and their applications. Journal of Optics 
24, 123001 (2022).



Born M and Wolf E, Principles of Optics (Cambridge University Press, Cambridge, 2002).



Born & Wolf; . Intensity distribution and images in the presence of coma.



Aberration of down-conversion probability in the generation of 3 photon pairs. 
Special case =0, i.e. n2 = n1 = n (~’Zernike polynomial distributions’). n = 2, 3.

The left figure refers to the initial n = 2. The righ figure refers to the initial n = 3.



Aberration of down-conversion probability in the generation of 3 photon pairs. 
Special case =0, i.e. n2 = n1 = n (~’Zernike distributions’). Superposition:n = 1, 2, 
3.

The left figure refers to the spontaneous process. The right figure refers to the initial n = 1.


