Higher-rank sectors and marginal deformations in the hexagon formalism

Dennis le Plat

Humboldt-Universität zu Berlin
based on 2212.03211 and 2302.02961 with Burkhard Eden and Anne Spiering

Budapest, 24.02.2023

Hexagon program

■ Spectrum is fairly well-understood

- Three-point functions by hexagon operators
for $\mathrm{AdS}_{5} \quad$ [Basso, Komatsu, Vieira '15] for AdS_{3} [Eden, DIP, Sonfdrini '21]
- In principle:
\rightarrow higher-point functions
\rightarrow non-planar correlators
[Eden, Sfondrini '17] [Fleury, Komatsu '17]
[Eden, Jiang, DIP, Sfondrini '17]
[Bargheer, Caetano, Fleury, Komatsu, Vieira '17]
[Bargheer, Coronado, Vieira '19] ...
\rightarrow wrapping corrections

$$
+\sin +2
$$

[Basso, Komatsu, Vieira '15][Eden, Sfondrini '15]
[Fleury, Komatsu '17] ...

Outline

1 Motivation and review

2 Higher-rank sectors and marginal deformations

3 Lagrangian insertion method

4 Conclusion and outlook

The $\mathrm{su}(2)$ spin chain

Anomalous dimension \leftrightarrow Spin chain energy
Spin chain with vacuum $Z(\downarrow)$ and excitations $X(\uparrow)$
$\mathrm{su}(2)$ sector BMN -operator with two scalar excitations $\operatorname{Tr}\left(Z^{L-k-2} X Z^{k} X\right)$

The $\mathrm{su}(2)$ spin chain

Anomalous dimension \leftrightarrow Spin chain energy
Spin chain with vacuum $Z(\downarrow)$ and excitations $X(\uparrow)$
$\mathrm{su}(2)$ sector BMN-operator with two scalar excitations $\operatorname{Tr}\left(Z^{L-k-2} X Z^{k} X\right)$
Planar one-loop dilatation operator on single-trace operators \leftrightarrow Spin chain Hamiltonian $H_{0}=1-\mathbb{P}$

$$
H_{0}\left|n_{1}, n_{2}, \ldots\right\rangle_{L}=\sum_{j=1}^{M}\left(2\left|\ldots, n_{j}, \ldots\right\rangle-\left|\ldots, n_{j}-1, \ldots\right\rangle-\left|\ldots, n_{j}+1, \ldots\right\rangle\right)
$$

yields the energy and S matrix

$$
E(p)=4 \sin \left(\frac{p}{2}\right)^{2}, \quad S\left(p_{j}, p_{k}\right)=-\frac{e^{i\left(p_{j}+p_{k}\right)}-2 e^{i p_{k}}+1}{e^{i\left(p_{j}+p_{k}\right)}-2 e^{i p_{j}}+1} .
$$

The su(2) Bethe equations

Introducing the rapidity $u=\frac{1}{2} \cot \frac{p}{2}$, the S matrix can be written as

$$
S\left(u_{j}, u_{k}\right)=\frac{u_{j}-u_{k}-i}{u_{j}-u_{k}+i}
$$

The Energy or anomalous dimension is

$$
E=\sum_{j=1}^{M} \frac{1}{u_{j}^{2}+\frac{1}{4}} .
$$

The $s u(2)$ Bethe equations

Introducing the rapidity $u=\frac{1}{2} \cot \frac{p}{2}$, the S matrix can be written as

$$
S\left(u_{j}, u_{k}\right)=\frac{u_{j}-u_{k}-i}{u_{j}-u_{k}+i}
$$

The Energy or anomalous dimension is

$$
E=\sum_{j=1}^{M} \frac{1}{u_{j}^{2}+\frac{1}{4}} .
$$

For M excitations, the Bethe equations are given by:

$$
\left(\frac{u_{j}+\frac{i}{2}}{u_{j}-\frac{i}{2}}\right)^{L} \prod_{j \neq k} \frac{u_{j}-u_{k}-i}{u_{j}-u_{k}+i}=1, \quad \text { and } \quad \prod_{j=1}^{M}\left(\frac{u_{j}+\frac{i}{2}}{u_{j}-\frac{i}{2}}\right)=1 .
$$

Example with $L=4, M=2: u_{1}=-u_{2}=\frac{1}{\sqrt{12}}$

Hexagon-like formula from the spin chain

Bethe state:

$$
\left|\Psi\left(p_{1}, p_{2}\right)\right\rangle=\sum_{1 \leq n<m \leq L} \underbrace{\left(e^{i p_{1} n+i p_{2} m}+S\left(p_{1}, p_{2}\right) e^{i p_{2} n+i p_{2} m}\right)}_{\psi(n, m)}|n, m\rangle
$$

Hexagon-like formula from the spin chain

Bethe state:

$$
\left|\Psi\left(p_{1}, p_{2}\right)\right\rangle=\sum_{1 \leq n<m \leq L} \underbrace{\left(e^{i p_{1} n+i p_{2} m}+S\left(p_{1}, p_{2}\right) e^{i p_{2} n+i p_{2} m}\right)}_{\psi(n, m)}|n, m\rangle
$$

Normalized cyclic state given by [Gaudin '76][Korepin '82]

$$
\mathcal{O}_{L}=\frac{\left|\Psi\left(p_{1}, p_{2}\right)\right\rangle}{\sqrt{\mathcal{G} L S_{12} \prod_{j}\left(u_{j}^{2}+\frac{1}{4}\right)}}
$$

Hexagon-like formula from the spin chain

Bethe state:

$$
\left|\Psi\left(p_{1}, p_{2}\right)\right\rangle=\sum_{1 \leq n<m \leq L} \underbrace{\left(e^{i p_{1} n+i p_{2} m}+S\left(p_{1}, p_{2}\right) e^{i p_{2} n+i p_{2} m}\right)}_{\psi(n, m)}|n, m\rangle
$$

Normalized cyclic state given by [Gaudin '76][Korepin '82]

$$
\mathcal{O}_{L}=\frac{\left|\Psi\left(p_{1}, p_{2}\right)\right\rangle}{\sqrt{\mathcal{G} L S_{12} \prod_{j}\left(u_{j}^{2}+\frac{1}{4}\right)}}
$$

Overlap:

$$
c_{123} \propto \sum_{1 \leq n<m \leq \ell_{12}} \psi_{1}(n, m) \quad \psi_{2}\left(L_{2}-m+1, L_{2}-n+1\right)
$$

Symmetries of the three-point function

Choosing Z as the vacuum

Take $1 / 2$-BPS operator $\mathcal{O}(0)$ at $x=0$
\rightarrow want to construct three translated operators $\mathcal{O}(x)$
\rightarrow should preserve as much (super)symmetry as possible

Symmetries of the three-point function

Choosing Z as the vacuum

Take $1 / 2$-BPS operator $\mathcal{O}(0)$ at $x=0$
\rightarrow want to construct three translated operators $\mathcal{O}(x)$
\rightarrow should preserve as much (super)symmetry as possible
Introduce the supertranslation generator

$$
\mathcal{T}_{\kappa}=-i \epsilon_{\alpha \dot{\alpha}} P^{\alpha \dot{\alpha}}+\kappa \epsilon_{\dot{a} a} R^{a \dot{a}}
$$

Symmetries of the three-point function

Choosing Z as the vacuum

Take $1 / 2$-BPS operator $\mathcal{O}(0)$ at $x=0$
\rightarrow want to construct three translated operators $\mathcal{O}(x)$
\rightarrow should preserve as much (super)symmetry as possible
Introduce the supertranslation generator

$$
\mathcal{T}_{\kappa}=-i \epsilon_{\alpha \dot{\alpha}} P^{\alpha \dot{\alpha}}+\kappa \epsilon_{\dot{\partial} a} R^{a \dot{a}}
$$

Use \mathcal{T}_{κ} to construct one parameter family of operators starting from $\mathcal{O}(0)$

$$
\mathcal{O}_{t, \kappa}=e^{t \mathcal{T}_{\kappa}} \mathcal{O}(0) e^{-t \mathcal{T}_{\kappa}} .
$$

Constraining the hexagon form factor by symmetry

Charges commuting with \mathcal{T}_{κ} form diagonal subalgebra $\mathfrak{p s u}(2 \mid 2)_{D}$
Write $\mathfrak{p s u}(2 \mid 2)^{2}$ excitations as $\chi^{\text {ad }}=\xi^{a} \otimes \dot{\xi}^{\dot{a}}$
Use bootstrap principle $\langle\mathbf{h} \mid \Psi\rangle=0$

Constraining the hexagon form factor by symmetry

Charges commuting with \mathcal{T}_{κ} form diagonal subalgebra $\mathfrak{p s u}(2 \mid 2)_{D}$
Write $\mathfrak{p s u}(2 \mid 2)^{2}$ excitations as $\chi^{a \dot{a}}=\xi^{a} \otimes \dot{\xi}^{\dot{a}}$
Use bootstrap principle $\langle\mathbf{h} \mid \Psi\rangle=0$
\rightarrow non-vanishing one-particle form factors for $Y, \bar{Y}, \mathcal{D}^{34}, \mathcal{D}^{4 \dot{3}}$

Constraining the hexagon form factor by symmetry

Charges commuting with \mathcal{T}_{κ} form diagonal subalgebra $\mathfrak{p s u}(2 \mid 2)_{D}$
Write $\mathfrak{p s u}(2 \mid 2)^{2}$ excitations as $\chi^{a \dot{a}}=\xi^{a} \otimes \dot{\xi}^{\dot{a}}$
Use bootstrap principle $\langle\mathbf{h} \mid \Psi\rangle=0$
\rightarrow non-vanishing one-particle form factors for $Y, \bar{Y}, \mathcal{D}^{34}, \mathcal{D}^{43}$
\rightarrow two-particle form factors Beisert S matrix elements [Beisert ' ${ }^{06]}$

$$
\begin{aligned}
\left\langle\mathbf{h} \mid \chi^{a_{1} \dot{a}_{1}} \chi^{a_{2} \dot{a}_{2}}\right\rangle & =(-1)^{f}\left\langle\xi^{a_{2}} \xi^{a_{1}}\right| \mathcal{S}\left|\dot{\xi}^{\dot{a}_{1}} \dot{\xi}^{\dot{a}_{2}}\right\rangle \\
& =(-1)^{f} \dot{S}_{\dot{a}_{1} \dot{a}_{2}}^{b_{2}} h_{\chi^{a_{1} \dot{b}_{1}}} h_{\chi^{a_{2}} \dot{b}_{2}} .
\end{aligned}
$$

Constraining the hexagon form factor by symmetry

Charges commuting with \mathcal{T}_{κ} form diagonal subalgebra $\mathfrak{p s u}(2 \mid 2)_{D}$
Write $\mathfrak{p s u}(2 \mid 2)^{2}$ excitations as $\chi^{\text {àa }}=\xi^{a} \otimes \dot{\xi}^{\dot{a}}$
Use bootstrap principle $\langle\mathbf{h} \mid \Psi\rangle=0$
\rightarrow non-vanishing one-particle form factors for $Y, \bar{Y}, \mathcal{D}^{3 \dot{4}}, \mathcal{D}^{4 \dot{3}}$
\rightarrow two-particle form factors Beisert S matrix elements [Beisert '06]

$$
\begin{aligned}
\left\langle\mathbf{h} \mid \chi^{a_{1} \dot{a}_{1}} \chi^{a_{2} \dot{a}_{2}}\right\rangle & =(-1)^{f}\left\langle\xi^{a_{2}} \xi^{a_{1}}\right| \mathcal{S}\left|\dot{\xi}^{\dot{a}_{1}} \dot{\xi}^{\dot{a}_{2}}\right\rangle \\
& =(-1)^{f} \dot{S}_{\dot{a}_{1} \dot{a}_{2}}^{\dot{b}_{1} \dot{b}_{2}} h_{\chi^{a_{1} \dot{b}_{1}}} h_{\chi^{a_{2} \dot{b}_{2}}}
\end{aligned}
$$

\rightarrow Multi-particle form factor:

$$
\left\langle\mathbf{h} \mid \chi^{a_{1} \dot{a}_{1}} \chi^{a_{2} \dot{a}_{2}} \ldots \chi^{a_{N} \dot{a}_{N}}\right\rangle=(-1)^{f}\left\langle\xi^{a_{N}} \ldots \xi^{a_{2}} \xi^{a_{1}}\right| \mathcal{S}\left|\dot{\dot{a}}^{\dot{a}_{1}} \dot{\dot{a}}^{\dot{a}_{2}} \ldots \dot{\xi}^{\dot{a}_{N}}\right\rangle
$$

Constraining the scalar h-factor
Scalar factor h in the hexagon
\longleftrightarrow dressing phase S_{0} in the S matrix

Constraining the scalar h-factor

Scalar factor h in the hexagon \longleftrightarrow dressing phase S_{0} in the S matrix

- Watson equation

Scattering with the full S matrix
$\langle\mathbf{h}| \mathbf{S}\left|\chi^{A \dot{A}}\left(p_{1}\right) \chi^{B \dot{B}}\left(p_{2}\right)\right\rangle=\left\langle\mathbf{h} \mid \chi^{A \dot{A}}\left(p_{1}\right) \chi^{B \dot{B}}\left(p_{2}\right)\right\rangle$

Constraining the scalar h-factor

Scalar factor h in the hexagon \longleftrightarrow dressing phase S_{0} in the S matrix

- Watson equation

Scattering with the full S matrix
$\langle\mathbf{h}| \mathbf{S}\left|\chi^{A \dot{A}}\left(p_{1}\right) \chi^{B \dot{B}}\left(p_{2}\right)\right\rangle=\left\langle\mathbf{h} \mid \chi^{A \dot{A}}\left(p_{1}\right) \chi^{B \dot{B}}\left(p_{2}\right)\right\rangle$

- Decoupling condition for a singlet

Constraining the scalar h-factor

Scalar factor h in the hexagon \longleftrightarrow dressing phase S_{0} in the S matrix

- Watson equation

Scattering with the full S matrix
$\langle\mathbf{h}| \mathbf{S}\left|\chi^{A \dot{A}}\left(p_{1}\right) \chi^{B \dot{B}}\left(p_{2}\right)\right\rangle=\left\langle\mathbf{h} \mid \chi^{A \dot{A}}\left(p_{1}\right) \chi^{B \dot{B}}\left(p_{2}\right)\right\rangle$

- Cyclicity

Constraining the scalar h-factor

Scalar factor h in the hexagon \longleftrightarrow dressing phase S_{0} in the S matrix

- Watson equation

Scattering with the full S matrix
$\langle\mathbf{h}| \mathbf{S}\left|\chi^{A \dot{A}}\left(p_{1}\right) \chi^{B \dot{B}}\left(p_{2}\right)\right\rangle=\left\langle\mathbf{h} \mid \chi^{A \dot{A}}\left(p_{1}\right) \chi^{B \dot{B}}\left(p_{2}\right)\right\rangle$

- Cyclicity

\Rightarrow Fixes the h-factor!
[Basso, Komatsu, Vieira '15]
\Rightarrow Similar construction in AdS_{3}
[Eden, DIP, Sonfdrini
'21]

Simple example

The splitting factor $\omega(\alpha, \bar{\alpha}, \ell)$ is given by

$$
\omega(\alpha, \bar{\alpha}, \ell)=(-1)^{|\bar{\alpha}|} \prod_{j \in \bar{\alpha}} e^{i p_{j} \ell} \prod_{\substack{k \in \alpha \\ j<k}} S\left(p_{j}, p_{k}\right) .
$$

Simple example

The splitting factor $\omega(\alpha, \bar{\alpha}, \ell)$ is given by

$$
\omega(\alpha, \bar{\alpha}, \ell)=(-1)^{|\bar{\alpha}|} \prod_{j \in \bar{\alpha}} e^{i p_{j} \ell} \prod_{\substack{k \in \alpha \\ j<k}} S\left(p_{j}, p_{k}\right) .
$$

How to generalize formalism to higher-rank sectors?
\rightarrow replace by nested wave function [Basso, Coronado, Komatsu, Lam, Vieira, Zhong '17]
Can we maintain the hexagon operator?

Plan

1 Motivation and review

2 Higher-rank sectors and marginal deformations

3 Lagrangian insertion method

4 Conclusion and outlook

Higher-rank models

Consider $\mathrm{SU}(3)$ sector with excitations X and Y
Consider the wave function $\psi_{\left\{X_{1}, Y_{2}\right\}}$, with the scattering

$$
\left|X_{1} Y_{2}\right\rangle \quad \rightarrow \quad T_{12}\left|Y_{2} X_{1}\right\rangle+R_{12}\left|X_{2} Y_{1}\right\rangle
$$

with transmission and reflection amplitudes

$$
T_{12}=\frac{A_{12}-B_{12}}{2} \quad \text { and } \quad R_{12}=\frac{A_{12}+B_{12}}{2}
$$

Higher-rank models

Consider $\operatorname{SU}(3)$ sector with excitations X and Y
Consider the wave function $\psi_{\left\{X_{1}, Y_{2}\right\}}$, with the scattering

$$
\left|X_{1} Y_{2}\right\rangle \quad \rightarrow \quad T_{12}\left|Y_{2} X_{1}\right\rangle+R_{12}\left|X_{2} Y_{1}\right\rangle
$$

with transmission and reflection amplitudes

$$
T_{12}=\frac{A_{12}-B_{12}}{2} \quad \text { and } \quad R_{12}=\frac{A_{12}+B_{12}}{2}
$$

Introduce a second wave function $\psi_{\left\{Y_{1}, X_{2}\right\}}$ with scattering

$$
\left|Y_{1} X_{2}\right\rangle \quad \rightarrow \quad T_{12}\left|X_{2} Y_{1}\right\rangle+R_{12}\left|Y_{2} X_{1}\right\rangle
$$

and consider the sum

$$
\psi(L)=g_{X Y} \psi_{\left\{X_{1}, Y_{2}\right\}}+g_{Y X} \psi_{\left\{Y_{1}, X_{2}\right\}}
$$

with yet to be determined coefficients $g_{X Y}$ and $g_{Y X}$.

Extracting the coefficients from nesting

■ Level-0 vacuum of length L

- M level-1 excitations move on level-0 vacuum with $S^{10}=e^{i p}$ and $S_{j k}^{11}=S\left(u_{j}, u_{k}\right)$
■ k level-2 excitations move on level-1 vacuum of length M with S^{21}, are
 scattered by S^{22} and have a creation amplitude f^{21}

$$
|Y(v)\rangle^{2}=f^{21}\left(v, u_{1}\right)\left|Y_{1} X_{2}\right\rangle+f^{21}\left(v, u_{2}\right) S^{21}\left(v, u_{1}\right)\left|X_{1} Y_{2}\right\rangle
$$

Extracting the coefficients from nesting

■ Level-0 vacuum of length L

- M level-1 excitations move on level-0 vacuum with $S^{10}=e^{i p}$ and $S_{j k}^{11}=S\left(u_{j}, u_{k}\right)$
- k level-2 excitations move on level-1 vacuum of length M with S^{21}, are
 scattered by S^{22} and have a creation amplitude f^{21}

$$
|Y(v)\rangle^{2}=f^{21}\left(v, u_{1}\right)\left|Y_{1} X_{2}\right\rangle+f^{21}\left(v, u_{2}\right) S^{21}\left(v, u_{1}\right)\left|X_{1} Y_{2}\right\rangle
$$

Scattering leads to

$$
\begin{aligned}
& g_{X Y} T_{12}+g_{Y X} R_{12}=f^{21}\left(v, u_{1}\right) S^{21}\left(v, u_{2}\right) S^{11}\left(u_{1}, u_{2}\right), \\
& g_{X Y} R_{12}+g_{Y X} T_{12}=f^{21}\left(v, u_{2}\right) S^{11}\left(u_{1}, u_{2}\right)
\end{aligned}
$$

\Rightarrow Coefficients $g_{X Y}$ and $g_{Y X}$ inherit dependence on the auxiliary Bethe roots v.

The nested hexagon

Cutting the $\mathrm{SU}(3)$ state

$$
\omega(\alpha, \bar{\alpha}, \ell) \psi_{\{\alpha\}} \psi_{\{\bar{\alpha}\}}=\left\{\begin{array}{l}
g_{X Y} \psi_{\left\{X_{u_{1}}, Y_{u_{2}}\right\}} \psi_{\{ \}}+g_{Y X} \psi_{\left\{Y_{u_{1}}, X_{u_{2}}\right\}} \psi_{\{ \}} \\
e^{i p_{2} \ell}\left(g_{X Y} \psi_{\left\{X_{u_{1}}\right\}} \psi_{\left\{Y_{u_{2}}\right\}}+g_{Y X} \psi_{\left\{Y_{u_{1}}\right\}} \psi_{\left\{X_{u_{2}}\right\}}\right) \\
e^{i p_{1} \ell}\left(T_{12} g_{Y X}+R_{12} g_{X Y}\right) \psi_{\left\{X_{u_{2}}\right\}} \psi_{\left\{Y_{u_{1}}\right\}}+ \\
e^{i p_{1} \ell}\left(T_{12} g_{X Y}+R_{12} g_{Y X}\right) \psi_{\left\{Y_{u_{2}}\right\}} \psi_{\left\{X_{u_{1}}\right\}} \\
e^{i\left(p_{1}+p_{2}\right) \ell}\left(g_{X Y} \psi_{\{ \}} \psi_{\left\{X_{u_{1}}, Y_{u_{2}}\right\}}+g_{Y X} \psi_{\{ \}} \psi_{\left\{Y_{u_{1}}, X_{u_{2}}\right\}}\right) .
\end{array}\right.
$$

\Rightarrow Agreement with free field theory

Double excitations

Consider $\operatorname{Tr}(X \bar{X}+Y \bar{Y}+Z \bar{Z})$

How can we describe \bar{Z} ?
\longrightarrow double excitations!

Double excitations

Consider $\operatorname{Tr}(X \bar{X}+Y \bar{Y}+Z \bar{Z})$

How can we describe \bar{Z} ?
\longrightarrow double excitations!

Can introduce creation amplitude in nested/matrix ansatz
Computations makes no further reference to the local structure of the state, i.e.

$$
\begin{aligned}
\psi_{\left\{X_{1}, \bar{x}_{2}\right\}}^{L}= & \psi_{\left\{X_{1}, \bar{x}_{2}\right\}} \psi_{\{ \}}-e^{i p_{2} \ell} \psi_{\left\{X_{1}\right\}} \psi_{\left\{\bar{X}_{2}\right\}}- \\
& e^{i p_{1} \ell}\left[T_{12}^{2} \psi_{\left\{\bar{X}_{2}\right\}} \psi_{\left\{X_{1}\right\}}+R_{12}^{2} \psi_{\left\{X_{2}\right\}} \psi_{\left\{\bar{x}_{1}\right\}}\right]- \\
& e^{i p_{1} \ell}\left[T_{12} R_{12} \psi_{\left\{\bar{Y}_{2}\right\}} \psi_{\left\{Y_{1}\right\}}+R_{12} T_{12} \psi_{\left\{Y_{2}\right\}} \psi_{\left\{\bar{Y}_{1}\right\}}\right]+ \\
& e^{i\left(p_{1}+p_{2}\right) \ell} \psi_{\{ \}} \psi_{\left\{X_{1}, \bar{x}_{2}\right\}} .
\end{aligned}
$$

Konishi

Let us evaluate $\left\langle\mathcal{K} \mathcal{O}^{L_{2}} \mathcal{O}^{L_{3}}\right\rangle$ with $\mathcal{K}=\frac{1}{\sqrt{3}} \operatorname{Tr}(X \bar{X}+Y \bar{Y}+Z \bar{Z})$.
This yields (tree-level)

$$
\mathcal{A}_{Q F T}=\frac{1}{\sqrt{3}} \sqrt{L_{2} L_{3}} .
$$

Konishi

Let us evaluate $\left\langle\mathcal{K} \mathcal{O}^{L_{2}} \mathcal{O}^{L_{3}}\right\rangle$ with $\mathcal{K}=\frac{1}{\sqrt{3}} \operatorname{Tr}(X \bar{X}+Y \bar{Y}+Z \bar{Z})$.
This yields (tree-level)

$$
\mathcal{A}_{\mathrm{QFT}}=\frac{1}{\sqrt{3}} \sqrt{L_{2} L_{3}} .
$$

Using $g_{X \bar{X}}=g_{\bar{X} X}=-g_{Y \bar{Y}}=-g_{\bar{Y} Y}$ and $u_{2}=-u_{1}=\frac{1}{\sqrt{12}}, v=0, w=0$

$$
\mathcal{A}_{\text {hexagon }}^{\ell_{12}=1}(-u, u)=\frac{8 g_{X \bar{X}} u}{\left(u-\frac{i}{2}\right)\left(u+\frac{i}{2}\right)^{2}}=\frac{\sqrt{3}}{2} .
$$

Konishi

Let us evaluate $\left\langle\mathcal{K} \mathcal{O}^{L_{2}} \mathcal{O}^{L_{3}}\right\rangle$ with $\mathcal{K}=\frac{1}{\sqrt{3}} \operatorname{Tr}(X \bar{X}+Y \bar{Y}+Z \bar{Z})$.
This yields (tree-level)

$$
\mathcal{A}_{\mathrm{QFT}}=\frac{1}{\sqrt{3}} \sqrt{L_{2} L_{3}} .
$$

Using $g_{X \bar{X}}=g_{\bar{X} X}=-g_{Y \bar{Y}}=-g_{\bar{Y} Y}$ and $u_{2}=-u_{1}=\frac{1}{\sqrt{12}}, v=0, w=0$

$$
\mathcal{A}_{\text {hexagon }}^{\ell_{12}=1}(-u, u)=\frac{8 g_{X \bar{x}} u}{\left(u-\frac{i}{2}\right)\left(u+\frac{i}{2}\right)^{2}}=\frac{\sqrt{3}}{2}
$$

We find agreement

$$
\mathcal{A}_{\mathrm{QFT}}=\left(u^{2}+\frac{1}{4}\right) L_{1} \sqrt{L_{2} L_{3}} \mathcal{A}_{\text {hexagon }} .
$$

\rightarrow Analogous results for $L_{1}=3,4, \ldots$ with $u=\frac{1}{2}, \frac{1}{2} \sqrt{1 \pm \frac{2}{\sqrt{5}}}, \ldots$

Deformed su(2) Bethe equations

Introduce twist factors into the Bethe equations
For two excitations, the Bethe equations are given by:

$$
\left(\frac{u_{j}+\frac{i}{2}}{u_{j}-\frac{i}{2}}\right)^{L} \frac{u_{j}-u_{k}-i}{u_{j}-u_{k}+i}=e^{2 i L \beta}, \quad \text { and } \quad\left(\frac{u_{1}+\frac{i}{2}}{u_{1}-\frac{i}{2}}\right)\left(\frac{u_{2}+\frac{i}{2}}{u_{2}-\frac{i}{2}}\right)=e^{4 i \beta}
$$

Deformed su(2) Bethe equations

Introduce twist factors into the Bethe equations
For two excitations, the Bethe equations are given by:

$$
\left(\frac{u_{j}+\frac{i}{2}}{u_{j}-\frac{i}{2}}\right)^{L} \frac{u_{j}-u_{k}-i}{u_{j}-u_{k}+i}=e^{2 i L \beta}, \quad \text { and } \quad\left(\frac{u_{1}+\frac{i}{2}}{u_{1}-\frac{i}{2}}\right)\left(\frac{u_{2}+\frac{i}{2}}{u_{2}-\frac{i}{2}}\right)=e^{4 i \beta} .
$$

Solutions for $L=4$:
■ BMN-like: $\quad u_{4}^{ \pm}= \pm \frac{1}{2 \sqrt{3}}-\frac{2 \beta}{3} \pm \frac{8 \beta^{2}}{9 \sqrt{3}}-\frac{16 \beta^{3}}{27} \pm \frac{112 \beta^{4}}{81 \sqrt{3}}+\mathcal{O}\left(\beta^{5}\right)$

- Vacuum descendant-like:

$$
u_{4}^{ \pm}=\frac{3 \pm i \sqrt{3}}{8} \frac{1}{\beta}+\frac{-3 \pm i \sqrt{3}}{9} \beta-\frac{4}{405}(21 \mp 8 \sqrt{3} i) \beta^{3}+\mathcal{O}\left(\beta^{5}\right)
$$

Deformed SU(2) sector

- Correlators can involve BMN-like and vacuum descendant-like operators

$$
\left\langle\mathcal{B}_{1} \mathcal{B}_{2} \mathcal{O}_{3}\right\rangle, \quad\left\langle\mathcal{B}_{1} \mathcal{O}_{2}^{\prime \prime} \mathcal{O}_{3}\right\rangle
$$

Deformed SU(2) sector

- Correlators can involve BMN-like and vacuum descendant-like operators

$$
\left\langle\mathcal{B}_{1} \mathcal{B}_{2} \mathcal{O}_{3}\right\rangle, \quad\left\langle\mathcal{B}_{1} \mathcal{O}_{2}^{\prime \prime} \mathcal{O}_{3}\right\rangle
$$

- Splitting factor
$\omega(\alpha, \bar{\alpha}, \ell)=\prod_{\tilde{u}_{i} \in \bar{\alpha}} e^{2 i \beta\left(d_{\alpha}-d_{\bar{\alpha}}\right)}\left(\frac{u_{i}+\frac{i}{2}}{u_{i}-\frac{i}{2}}\right)^{\ell} e^{-2 i \beta \ell} \prod_{u_{1} \in \bar{\alpha}, u_{2} \in \alpha} \frac{u_{1}-u_{2}-i}{u_{1}-u_{2}+i}$

Deformed SU(2) sector

- Correlators can involve BMN-like and vacuum descendant-like operators

$$
\left\langle\mathcal{B}_{1} \mathcal{B}_{2} \mathcal{O}_{3}\right\rangle, \quad\left\langle\mathcal{B}_{1} \mathcal{O}_{2}^{\prime \prime} \mathcal{O}_{3}\right\rangle
$$

- Splitting factor

$$
\omega(\alpha, \bar{\alpha}, \ell)=\prod_{\tilde{u}_{i} \in \bar{\alpha}} e^{2 i \beta\left(d_{\alpha}-d_{\bar{\alpha}}\right)}\left(\frac{u_{i}+\frac{i}{2}}{u_{i}-\frac{i}{2}}\right)^{\ell} e^{-2 i \beta \ell} \prod_{u_{1} \in \bar{\alpha}, u_{2} \in \alpha} \frac{u_{1}-u_{2}-i}{u_{1}-u_{2}+i}
$$

- Hexagon normalization $\mathcal{N}=\sqrt{\frac{L_{1} L_{2} L_{3}}{\mathcal{G}_{12} S_{12} G_{34} S_{34}}}$

Deformed SU(2) sector

- Correlators can involve BMN-like and vacuum descendant-like operators

$$
\left\langle\mathcal{B}_{1} \mathcal{B}_{2} \mathcal{O}_{3}\right\rangle, \quad\left\langle\mathcal{B}_{1} \mathcal{O}_{2}^{\prime \prime} \mathcal{O}_{3}\right\rangle
$$

- Splitting factor
$\omega(\alpha, \bar{\alpha}, \ell)=\prod_{\tilde{u}_{i} \in \bar{\alpha}} e^{2 i \beta\left(d_{\alpha}-d_{\bar{\alpha}}\right)}\left(\frac{u_{i}+\frac{i}{2}}{u_{i}-\frac{i}{2}}\right)^{\ell} e^{-2 i \beta \ell} \prod_{u_{1} \in \bar{\alpha}, u_{2} \in \alpha} \frac{u_{1}-u_{2}-i}{u_{1}-u_{2}+i}$
- Hexagon normalization $\mathcal{N}=\sqrt{\frac{L_{1} L_{2} L_{3}}{\mathcal{G}_{12} S_{12} G_{34} S_{34}}}$
- Special role of longitudinal excitations
\Rightarrow Agreement with field theory results

Asymptotic hexagon at one-loop

- Consider three-point functions with all $\ell_{i j} \geq 1$ and disregard wrapping corrections

Asymptotic hexagon at one-loop

- Consider three-point functions with all $\ell_{i j} \geq 1$ and disregard wrapping corrections
- Rapidities from asymptotic Bethe equations

Asymptotic hexagon at one-loop

- Consider three-point functions with all $\ell_{i j} \geq 1$ and disregard wrapping corrections
- Rapidities from asymptotic Bethe equations
- Need to include the measure factor

$$
\mu(u)=\frac{-i}{\operatorname{res}_{v=u}\left\langle\tilde{\mathbf{h}} \mid \bar{X}\left(v^{2 \gamma}\right) X(u)\right\rangle}=1-\frac{g^{2}}{\left(u^{2}+\frac{1}{4}\right)^{2}}+\mathcal{O}\left(g^{4}\right)
$$

\Rightarrow Agreement with field theory results

Plan

1 Motivation and review

2 Higher-rank sectors and marginal deformations

3 Lagrangian insertion method

4 Conclusion and outlook

Lagrangian insertion method

Consider n-point function

$$
\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle=\int D \phi D A D \psi e^{i \int d^{4} x_{0} \mathcal{L}\left(x_{0}\right)} \mathcal{O}_{1} \ldots \mathcal{O}_{n}
$$

It follows that

$$
g^{2} \frac{\partial}{\partial g^{2}}\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle=-i \int d^{4} x_{0}\left\langle\mathcal{L}_{0} \mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle
$$

Lagrangian insertion method

Consider n-point function

$$
\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle=\int D \phi D A D \psi e^{i \int d^{4} x_{0} \mathcal{L}\left(x_{0}\right)} \mathcal{O}_{1} \ldots \mathcal{O}_{n}
$$

It follows that

$$
g^{2} \frac{\partial}{\partial g^{2}}\left\langle\mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle=-i \int d^{4} x_{0}\left\langle\mathcal{L}_{0} \mathcal{O}_{1} \ldots \mathcal{O}_{n}\right\rangle
$$

Introduce Lagrange operator as $L=2$ vacuum descendant
Integrability picture: Yang-Mills Lagrangian $\operatorname{Tr}\left(F^{2}\right)$ build from the excitations

$$
\Psi_{1}^{4 \dot{2}}, \quad \Psi_{2}^{4 \dot{1}}, \quad \Psi_{3}^{3 \dot{2}}, \quad \Psi_{4}^{3 \dot{1}}
$$

with rapidities $u_{1}, \ldots u_{4}$ and auxiliary rapidities v_{1}, v_{2} and w_{1}, w_{2}

Lagrangian insertion: A first test
Two-point function of BPS-operators is protected: $\left\langle\mathcal{L}_{0} \mathcal{O}_{1}^{L} \mathcal{O}_{2}^{L}\right\rangle=0$

$$
\begin{aligned}
& \left\langle\mathcal{L}_{0} \mathcal{O}_{1}^{L} \mathcal{O}_{2}^{L}\right\rangle=2\left[\left\langle\mathbf{h} \mid \psi_{1}^{4 \dot{2}} \psi_{2}^{4 i} \psi_{3}^{3 \dot{2}} \psi_{4}^{3 \dot{i}}\right\rangle+\left\langle\mathbf{h} \mid \psi_{1}^{4 \dot{2}} \psi_{4}^{3 \dot{i}}\right\rangle\left\langle\mathbf{h} \mid \psi_{2}^{4 \dot{i}} \psi_{3}^{3 \dot{2}}\right\rangle\right]+ \\
& \tilde{g}\left[\left\langle\mathbf{h} \mid D_{1}^{4 \dot{3}}\right\rangle\left\langle\mathbf{h} \mid \Psi_{2}^{4 i} \psi_{3}^{3 \dot{2}} D_{4}^{3 \dot{4}}\right\rangle+\left\langle\mathbf{h} \mid D_{2}^{4 \dot{3}}\right\rangle\left\langle\mathbf{h} \mid \psi_{1}^{4 \dot{2}} D_{3}^{3 \dot{4}} \psi_{4}^{3 i}\right\rangle+\right. \\
& \left\langle\mathbf{h} \mid D_{3}^{3 \dot{4}}\right\rangle\left\langle\mathbf{h} \mid \Psi_{1}^{4 \dot{2}} D_{2}^{4 \dot{3}} \Psi_{4}^{3 \dot{i}}\right\rangle+\left\langle\mathbf{h} \mid D_{4}^{3 \dot{4}}\right\rangle\left\langle\mathbf{h} \mid D_{1}^{4 \dot{3}} \Psi_{2}^{4 \dot{i}} \Psi_{3}^{3 \dot{i}}\right\rangle+ \\
& \left\langle\mathbf{h} \mid Y_{1}\right\rangle\left\langle\mathbf{h} \mid \Psi_{2}^{4 \mathrm{i}} \Psi_{3}^{3 \dot{2}} \bar{Y}_{4}\right\rangle+\left\langle\mathbf{h} \mid \bar{Y}_{2}\right\rangle\left\langle\mathbf{h} \mid \Psi_{1}^{4 \dot{2}} Y_{3} \psi_{4}^{3 \mathrm{i}}\right\rangle+ \\
& \left.\left\langle\mathbf{h} \mid Y_{3}\right\rangle\left\langle\mathbf{h} \mid \Psi_{1}^{4 \dot{2}} \bar{Y}_{2} \psi_{4}^{3 i}\right\rangle+\left\langle\mathbf{h} \mid \bar{Y}_{4}\right\rangle\left\langle\mathbf{h} \mid Y_{1} \psi_{2}^{4 i} \Psi_{3}^{3 \dot{2}}\right\rangle\right]+ \\
& \tilde{g}^{2}\left[\left\langle\mathbf{h} \mid D_{1}^{4 \dot{3}} D_{2}^{4 \dot{3}}\right\rangle\left\langle\mathbf{h} \mid D_{3}^{3 \dot{4}} D_{4}^{3 \dot{4}}\right\rangle+\left\langle\mathbf{h} \mid D_{1}^{4 \dot{3}} \bar{Y}_{2}\right\rangle\left\langle\mathbf{h} \mid Y_{3} D_{4}^{3 \dot{4}}\right\rangle+\right. \\
& \left.\left\langle\mathbf{h} \mid Y_{1} D_{2}^{43}\right\rangle\left\langle\mathbf{h} \mid D_{3}^{34} \bar{Y}_{4}\right\rangle+\left\langle\mathbf{h} \mid Y_{1} \bar{Y}_{2}\right\rangle\left\langle\mathbf{h} \mid Y_{3} \bar{Y}_{4}\right\rangle\right] \\
& \left\langle\mathcal{L}_{0} \mathcal{O}_{1}^{L} \mathcal{O}_{2}^{L}\right\rangle \rightarrow 4 \tilde{g}^{2}(1-2+1)=0
\end{aligned}
$$

Future Applications?

Example: five-point function involving five protected operators
Process at one-loop involving two mirror excitations

Hard to evaluate
[Fleury, Komatsu '17],
[de Leeuw, Eden, DIP, Meier, Sfondrini '19]

$$
I=\sum_{a, b=1}^{\infty} \sum_{k, l=0}^{a-1, b-1} \int \frac{d u_{1} d u_{2} a b}{\left(u_{1}+\frac{a}{4}\right)^{2}\left(u_{2}+\frac{b}{4}\right)^{2}} W_{1} W_{2} \Sigma^{a b} \mathcal{X}_{k}^{k, I}
$$

\rightarrow Can the Lagrangian insertion method simplify the evaluation?

Future Applications?

Colour-dressed hexagons allow to tessellate the torus
\rightarrow Non-planar two point functions

\rightarrow Many length 0 edges
\rightarrow Can the Lagrangian insertion method help?

Plan

1 Motivation and review

2 Higher-rank sectors and marginal deformations

3 Lagrangian insertion method

4 Conclusion and outlook

Conclusions and Outlook

■ Powerful tool to calculate correlation functions in $\mathcal{N}=4$ SYM

- Maintain the hexagon operator for higher-rank sectors
- importing the g-coefficients from the nested Bethe ansatz
- local details of the wave functions eclipsed

■ Marginal deformations for certain classes of correlators involving $\mathfrak{p s u}(1,1 \mid 2)$ operators
\rightarrow Is there a hexagon operator for deformed theories?

- Lagrangeoperator using double excitations
- Four fermions on the hexagon

■ Simplest test of Lagrangian insertion method with hexagons \rightarrow Loop corrections for less simple two- and three-point functions?
\rightarrow Non-planar corrections?

