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Hexagon program
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m Spectrum is fairly well-understood

m Three-point functions by
hexagon operators
for AdS5 [Basso, Komatsu, Vieira '15]
for AdS; [Eden, DIP, Sonfdrini '21]
® In principle:

— higher-point functions

— non-planar correlators

— wrapping corrections

[Eden, Sfondrini '17] [Fleury, Komatsu '17]

[Eden, Jiang, DIP, Sfondrini '17]
[Bargheer, Caetano, Fleury, Komatsu, Vieira '17|

[Bargheer, Coronado, Vieira '19] ...

[Basso, Komatsu, Vieira '15][Eden, Sfondrini '15]
[Fleury, Komatsu '17] ...
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Motivation and review
[ Jele]ele]e]e)

The su(2) spin chain

Anomalous dimension <+ Spin chain energy [Minahan, Zarembo '02]
Spin chain with vacuum Z (]) and excitations X (1)

su(2) sector BMN-operator with two scalar excitations Tr(Z:~*"2XZ* X)
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[ Jele]ele]e]e)

The su(2) spin chain

Anomalous dimension <+ Spin chain energy [Minahan, Zarembo '02]

Spin chain with vacuum Z (]) and excitations X (1)
su(2) sector BMN-operator with two scalar excitations Tr(Z:~*"2XZ* X)

Planar one-loop dilatation operator on single-trace operators <> Spin chain
Hamiltonian Hp =1 —P

M
Holm,ma,...) => (2..om,.)=|om =10 =, +1,..)),

j=1
yields the energy and S matrix

e'(PitP) _ ogiPk 1
el(PitpP) _ Dgipi 4 1"

E(p) =4sin (B)", S(pr.pe) = -
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Motivation and review
[e] le]ele]e]e)

The su(2) Bethe equations

Introducing the rapidity u = %cot 2, the S matrix can be written as
up—ug—i
S(uj, ux) = 2 - .
(uj, ) up—uk+i

1

2 1°
uj+4

The Energy or anomalous dimension is

E=y

=t
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Motivation and review
[e] le]ele]e]e)

The su(2) Bethe equations

Introducing the rapidity u = %cot 2, the S matrix can be written as

ui— ux — I
S(uj, u) = 22— .
(uj, ) up—uk+i

The Energy or anomalous dimension is

Yoo
E = E .
2, 1
j=1 UJ+Z

For M excitations, the Bethe equations are given by:

. L M .
U'+L L _ U'+L
JTa ][M:L and ][ dT2 ) _q

. Uj — Uk +1 j=1 Uj—é

Yi=3) js

Example with L=4, M =2: u1 = —wn = ﬁ
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Motivation and review
[e]e] lele]e]e)

Hexagon-like formula from the spin chain

Bethe state:

|\U(p1,p2)) — Z (eiP1n+iP2m + 5(p1’p2)eipzn+ipzm) |r’7 m>

1<n<m<L

P (n,m)
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Normalized cyclic state given by [Gaudin '76][Korepin '82]
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[e]e] lele]e]e)

Hexagon-like formula from the spin chain

Bethe state:

|\U(p1,p2)) — Z (eiP1n+iP2m + 5(p1’p2)eipzn+ipzm) |I‘I7 m>

1<n<m<L

w(n,m)

Normalized cyclic state given by [Gaudin '76][Korepin '82]

X X% L

\U Il "’. \

OL — | (p17 p2)> ; : \

VoLS: TT(2 +3) AR ,
|
Overlap: : ; B

C123 X Z Pi(n,m) Yo(lo—m+1,Lb—n+1) SN
1<n<m<ty, Lx x .
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Motivation and review
[e]e]e] le]ele)

Symmetries of the three-point function

Choosing Z as the vacuum

01(0)  02(1) O3(0)

Y
x

Take 1/2-BPS operator O(0) at x =0

— want to construct three translated operators O(x)
— should preserve as much (super)symmetry as possible
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Choosing Z as the vacuum

01(0)  02(1) O3(0)

Take 1/2-BPS operator O(0) at x =0

— want to construct three translated operators O(x)
— should preserve as much (super)symmetry as possible

Introduce the supertranslation generator [Basso, Komatsu, Vieira '15]

. fe%e" aa
T = —i€aaP™" + ke aR™,
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Motivation and review
[e]e]e] le]ele)

Symmetries of the three-point function

Choosing Z as the vacuum

01(0)  02(1) O3(0)

Take 1/2-BPS operator O(0) at x =0

— want to construct three translated operators O(x)
— should preserve as much (super)symmetry as possible

Introduce the supertranslation generator [Basso, Komatsu, Vieira '15]
T = —ieaa P + resaR*,
Use 7. to construct one parameter family of operators starting from O(0)

O =T 00)e 7",
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Motivation and review
[e]e]e]e] lele)

Constraining the hexagon form factor by symmetry
Charges commuting with 7., form diagonal subalgebra psu(2|2)p

Write psu(2]2)? excitations as x* = &2 ® £
Use bootstrap principle (h|W) =0
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Charges commuting with 7. form diagonal subalgebra psu(2|2)p
Write psu(2]2)? excitations as x* = &2 ® £
Use bootstrap principle (h|W) =0

— non-vanishing one-particle form factors for Y, Y, D34, D3
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Charges commuting with 7. form diagonal subalgebra psu(2|2)p
Write psu(2]2)? excitations as x* = &2 ® £
Use bootstrap principle (h|W) =0

— non-vanishing one-particle form factors for Y, Y, D34, D3

— two-particle form factors Beisert S matrix elements [Beisert '06]

(" x7) = (1) (€267 SIERE™) w

_ f &by by . . ab
- (_1) 5é1é2 th1b1 thzbz . Sjﬁ(n a)



Motivation and review
[e]e]e]e] lele)

Constraining the hexagon form factor by symmetry

8 /26

Charges commuting with 7. form diagonal subalgebra psu(2|2)p
Write psu(2]2)? excitations as x* = &2 ® £
Use bootstrap principle (h|W) =0

— non-vanishing one-particle form factors for Y, Y, D34, D3

— two-particle form factors Beisert S matrix elements [Beisert '06]

(" x7) = (1) (€267 SIERE™) w

by by . . ~
= (—1) Shbap h . Sjg(pﬂ)

a1dy yabr yazby
— Multi-particle form factor:
(XX ) = (1) (€7 €€ SIEER €M)

[Basso, Komatsu, Vieira '15]
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Constraining the scalar h-factor

Scalar factor h in the hexagon +—  dressing phase Sy in the S matrix
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Constraining the scalar h-factor

Scalar factor h in the hexagon +—  dressing phase Sy in the S matrix

= Watson equation h
Scattering with the full S matrix P b:
(h[S [x* ()X (p2)) = (X (p1)x " (p2)) b b
Pi P2 G Gn qr---Gn
—a—EN
4 \ 4 \
/ \ / \

m Decoupling condition for a singlet Res,, \ / ~ \ /
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[e]e]e]e]e] o)

Constraining the scalar h-factor
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Scalar factor h in the hexagon +—  dressing phase Sy in the S matrix

m Watson equation h
Scattering with the full S matrix 2 P
(h[S X (p1)x"?(p2)) = (WX ()X " (p2)) b b
Pi P2 G Gn Gs..-Gn
/ \ 4 \
m Decoupling condition for a singlet Res,, 2 /\ /\ ~ /\ /\
pq P q g p

? \

/i \'7 \

/
m Cyclicity /\ / = \ >\/ /\ /\ =
i N/ /
— N - - N >/



Motivation and review

[e]e]e]e]e] o)

Constraining the scalar h-factor

9/26

Scalar factor h in the hexagon +—  dressing phase Sy in the S matrix

= Watson equation h
Scattering with the full S matrix P b:
(h[S [x* ()X (p2)) = (X (p1)x " (p2)) b b
Pi P2 G Gn qr---Gn

m Decoupling condition for a singlet

4 \ / \
/ \ / \
pq P q g p
4 \ / - 4 \ 1 -
.. ’ \ ’ '*?\ ’ \ / /\
m Cyclicity \ = \ \ \ = \<
/ / / "i(y

= Fixes the h-factor! [Basso, Komatsu, Vieira '15]
= Similar construction in AdSs [Eden, DIP, Sonfdrini '21]



Motivation and review
000000e

Simple example

\

@ , 0<  /’&

9 y /
2, i
/ \ / / \
/ \ > nilia.dy 4 \ 4
/ \ N / WK, % £:)
£ \ / ¥

A = Z w(a,a,f) (hla) (hl@) .

aUa

The splitting factor w(a, @&, £) is given by

w(av a, e) = (_l)l&‘ H eipjé H S(pj7 Pk) :

JjEa k€a
j<k
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Motivation and review
000000e

Simple example

A = Z w(a,a,f) (hla) (hl@) .

[ [

aUa

The splitting factor w(a, @&, £) is given by

w(av a, f) = (_l)l&‘ H eipjé H S(pj7 Pk) :

JjEa k€a
j<k

How to generalize formalism to higher-rank sectors?
— replace by nested wave function [Basso, Coronado, Komatsu, Lam, Vieira, Zhong '17]
Can we maintain the hexagon operator?

10 / 26



Higher-rank sectors and marginal deformations
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Plan

Higher-rank sectors and marginal deformations
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Higher-rank sectors and marginal deformations
000000000

Higher-rank models

Consider SU(3) sector with excitations X and Y

Consider the wave function v¥(x; v,}, with the scattering
X1 Y2) — T |Y2Xi)+ R | X2 Y1),
with transmission and reflection amplitudes

A — B A B
_ A 12 and Ri — 12 + 12

T,
12 2 2
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000000000

Higher-rank models

Consider SU(3) sector with excitations X and Y

Consider the wave function v¥(x; v,}, with the scattering
X1 Y2) — T |Y2Xi)+ R | X2 Y1),
with transmission and reflection amplitudes

A — B A B
_ A 12 and Ri — 12 + 12

T,
12 2 2

Introduce a second wave function vy, x,} with scattering
[Y1X2) — T |XoYi)+ R |Y2X1),
and consider the sum
V(L) = gxv Yixi,va) + 8Yx Yivix) s

with yet to be determined coefficients gxy and gyx.

12 /26



Higher-rank sectors and marginal deformations
[e]e] lelelelelele)

Extracting the coefficients from nesting

m Level-0 vacuum of length L
m M level-1 excitations move on level-0
vacuum with S* = e® and Si = S(uj, uk)
m k level-2 excitations move on level-1
. 21
vacuum of Ien%h M with 5, are 00 o o
scattered by S°° and have a creation
amplitude %

Y () = £ (v, ) [ Vs Xa) + F2 (v, 1) S™ (v, ) [ X, Vo)
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Higher-rank sectors and marginal deformations
[e]e] lelelelelele)

Extracting the coefficients from nesting

m Level-0 vacuum of length L

m M level-1 excitations move on level-0
vacuum with S* = e® and Si = S(uj, uk)
m k level-2 excitations move on level-1
vacuum of length M with S, are 00 o o
scattered by $?* and have a creation
amplitude %

Y (V) = £ (v, 1) | Y1 Xo) + £ (v, 12) 8% (v, t1) | X1 Ya)
Scattering leads to

gxy Tia + gyx Rz = £ (v, 1n)S™ (v, 1) S (u1, wn)
gxyRi2 + gyx Tz = £ (v, 12) S (u1, ) .

= Coefficients gxy and gyx inherit dependence on the auxiliary Bethe roots v.

13 /26



Higher-rank sectors and marginal deformations
[e]e]e] lelelelele)

The nested hexagon

- - x

Cutting the SU(3) state

<~ R
< =

gxy w{xul’yw}’lﬁ{} + gvyx w{vul ,Xu2}¢{} )

eiP2t (gxy Vix, 1 V1., + 8vx w{vul}iﬁ{xuz}) ;
w(@, @ Otrayhgay = €™ (Trogvx + Ri2gxy) Yix,, ) Yiviy )+

et (Ti28xy + Ri2gvx) 1/1{Yu2}¢{><u1} )

RICEVAL (gxyw{}w{xuvyw} +gvx¢{}¢ml,XU2}> :

= Agreement with free field theory
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Higher-rank sectors and marginal deformations
[e]e]e]e] Telelele)

Double excitations

Consider Tr(XX + YY + Z2)

How can we describe Z? 5 7’
— double excitations! N
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Higher-rank sectors and marginal deformations
[e]e]e]e] Telelele)

Double excitations

Consider Tr(XX + YY + Z2)

. S 1 1 o 42 )3
How can we describe Z? ) R}' P ¢ L

R )
7 — P*® ¢
™ $204é "R

— double excitations!

Can introduce creation amplitude in nested/matrix ansatz
Computations makes no further reference to the local structure of the state, i.e.
L _ _ ip2t _
Vix %) =Py v — €7 0oy gy —
Pt [ T Uiz Yy + Rz Y03 w{xl}} -
et [ TR ¥y, iy + RaTe Vv Yyl +

e'(P1+P2

14
90 Ps -
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Higher-rank sectors and marginal deformations
[e]e]e]e]e] lelele)

Konishi
Let us evaluate (K O O") with K = %Tr(X)_( +YY +22).
This yields (tree-level)
1
Aqet = 73 Viols.
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Higher-rank sectors and marginal deformations
[e]e]e]e]e] lelele)

Konishi

Let us evaluate (K O O") with K = %Tr(X)_( +YY +22).

This yields (tree-level)

1
Aqet = ﬁ Viols.

Using gxx = 8xx = —8yy = —8yy and uip = —uy = ﬁ v=0,w=0
At (= BB V3
wW-Dwriyp 2
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Higher-rank sectors and marginal deformations
[e]e]e]e]e] lelele)

Konishi

Let us evaluate (K O O") with K = %Tr(X)_( +YY +22).
This yields (tree-level)

1
Agrr = —= V6aLs.

V3
Using gxx = gxx = —8yy = —gyy and o = —u1 = 5, v =0, w =0
- 8gxx u V3
Ao (—uy ) = —— 2K = I

(u—Hu+4?
We find agreement

1
.AQFT = (U2 + Z) le Ahexagon .

— Analogous results for L1 = 3,4,... with u = %7 %

16 / 26



Higher-rank sectors and marginal deformations
000000800

Deformed su(2) Bethe equations

Introduce twist factors into the Bethe equations [Beisert, Roiban '05]

For two excitations, the Bethe equations are given by:

L . .
. I !
u — ux — 1 2iL ui 3 uz 3 4
. =" and =2 ) [ =212 ) =P

L P _ i _ i
uj — ux+1 i — 3 U — 3

Nol=-

uj +

uj —

Nol=-
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Higher-rank sectors and marginal deformations
000000800

Deformed su(2) Bethe equations

Introduce twist factors into the Bethe equations [Beisert, Roiban '05]

For two excitations, the Bethe equations are given by:
uj + g uj — Ux — i 2iL3 uy + é uz + é 4i3
. =¢e"", and — —= | =e".

uj — Uj_Uk"Fl u— 5 u— 5

Solutions for L = 4'

. 2 3 4
= BMN-like: =+l - B4 3 1 4 2T 1 0(8°)

Nol=-

Nol=-

m Vacuum descendant-like:
uiﬁ: _ 3:I:lf 31 _|_ —3:!::\//8 (21 :F8\/§I)ﬂ3 +O(55)

17 / 26



Higher-rank sectors and marginal deformations
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Deformed SU(2) sector
X [

/ \ — by i
/,; \L N P w(x,%2,) w (y.y.4) \ /

m Correlators can involve BMN-like and vacuum descendant-like operators

(Bi1B203) ,  (B10303)

‘\?‘ 3. *

®
=y vy
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Deformed SU(2) sector
X [

/ \ — by i
/,; \L N P w(x,%2,) w (y.y.4) \ /

m Correlators can involve BMN-like and vacuum descendant-like operators

(Bi1B203) ,  (B10303)

‘\?‘ 3. *

®
=y vy

m Splitting factor
N

2iB(de —da) [ Uitz ef2iBéH Uy —up—i

Ui*é‘ U EQ € uy—up+i

w(a, @, ) = Hﬁ,-e& e
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Deformed SU(2) sector

m Correlators can involve BMN-like and vacuum descendant-like operators

(Bi1B203) ,  (B10303)

< m

m Splitting factor
(e, @,0) =TTz en £2i8(da—da) (“i+

Jrol=-

4
—2ipB¢ up—up—i
uj— ) e HU1€5,U2€0 up —up+i

izati LiLoL
m Hexagon normalization ' = m

NI~
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000000080

Deformed SU(2) sector

m Correlators can involve BMN-like and vacuum descendant-like operators

(Bi1B203) ,  (B10303)

<=

m Splitting factor
W(Q, &, Z) = Hﬁ,‘é& e2iB(d{Y7d6) (UH—

oI~

4
—2ipB¢ up—up—i
ui— ) e Huleé,uzea uy—up+i

izati LiLoL
m Hexagon normalization ' = m

m Special role of longitudinal excitations

NI~

= Agreement with field theory results

18 / 26



Higher-rank sectors and marginal deformations
00000000e

Asymptotic hexagon at one-loop

x  _x

%

(%% ) iy 74 < ¢

m Consider three-point functions with all ¢; > 1 and disregard wrapping
corrections
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corrections
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m Rapidities from asymptotic Bethe equations
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Asymptotic hexagon at one-loop

m Consider three-point functions with all ¢; > 1 and disregard wrapping
corrections

< om

m Rapidities from asymptotic Bethe equations
m Need to include the measure factor
—i 2

_ __ &g
res,—y (h|X(v27)X(u)) (u? +3)?

w(u)

+0(g"

= Agreement with field theory results
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Lagrangian insertion method
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Plan

Lagrangian insertion method

20 / 26



Lagrangian insertion method
[o] Je]e]e]

Lagrangian insertion method

Consider n-point function
(01...0,) = / Dé DA Dy & 970E0) 0, 0,

It follows that

2 0

g @(OL..O,,)Zfi/d“xo (Lo O1...0,) .
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Lagrangian insertion method
[o] Je]e]e]

Lagrangian insertion method

Consider n-point function
(01...0,) = / Dé DA Dy & 970E0) 0, 0,

It follows that

2 0

g @<Ol...0n>:*i/d4Xo (Lo O1...0,) .

Introduce Lagrange operator as L = 2 vacuum descendant

Integrability picture: Yang-Mills Lagrangian Tr(F?) build from the excitations
wE,owe, v e

with rapidities u1, ... us and auxiliary rapidities vi, v and wi, wo

21 /26



Lagrangian insertion method
[e]e] le]e]

Lagrangian insertion: A first test

Two-point function of BPS-operators is protected: (Lo Of O%) =0

(Lo OtOF) = 2 [ Wi WP i) + (i wd) (i v | +
& [(hID%) (hws w3 D) + (h|DF%) (hlwi” D wi) +

(h| D3y (h|W¥ DE W3 + (h|DF*) (h| D Wit W) +

(h|Y2) (W3 W3 Va) + (h|V2) (h[ Wi Vs W) +

(hlYa) (hWY VW3 + (bl Va) (h]va Wi wd)] +

& [(nID D) (h|D3* D) + (h|DY* V2) (|3 D) +

(h|Y: D) (h|D3* Ya) + (h| Y3 ¥2) (| Y5 Vi) |

(Lo OTO5) - 45°(1-2+1)=0

22 /26



Lagrangian insertion method
[e]e]e] o]

Future Applications?

Example: five-point function involving five protected operators
Process at one-loop involving two mirror excitations
1 2 5

Hard to evaluate [Fleury, Komatsu '17],
[de Leeuw, Eden, DIP, Meier, Sfondrini '19]

/ duyduzab Wy s X!
a k
k,1=0 (u1 + §)%(u2 + )2

— Can the Lagrangian insertion method simplify the evaluation?
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Lagrangian insertion method
0000e

Future Applications?

Colour-dressed hexagons allow to tessellate the torus

— Non-planar two point functions [Eden, DIP, Sfondrini, Jiang '17]

— Many length 0 edges

— Can the Lagrangian insertion method help?

24 /26
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oe

Conclusions and Outlook

m Powerful tool to calculate correlation functions in N' = 4 SYM

m Maintain the hexagon operator for higher-rank sectors

m importing the g-coefficients from the nested Bethe ansatz
m local details of the wave functions eclipsed

m Marginal deformations for certain classes of correlators involving
psu(1, 1|2) operators
— Is there a hexagon operator for deformed theories?

m Lagrangeoperator using double excitations
m Four fermions on the hexagon

m Simplest test of Lagrangian insertion method with hexagons — Loop
corrections for less simple two- and three-point functions?
— Non-planar corrections?

26 / 26
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