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Hexagon program

Spectrum is fairly well-understood

Three-point functions by
hexagon operators
for AdS5 [Basso, Komatsu, Vieira ’15]

for AdS3 [Eden, DlP, Sonfdrini ’21]

In principle:

→ higher-point functions [Eden, Sfondrini ’17] [Fleury, Komatsu ’17]

→ non-planar correlators [Eden, Jiang, DlP, Sfondrini ’17]

[Bargheer, Caetano, Fleury, Komatsu, Vieira ’17]

[Bargheer, Coronado, Vieira ’19] . . .

→ wrapping corrections [Basso, Komatsu, Vieira ’15][Eden, Sfondrini ’15]

[Fleury, Komatsu ’17] . . .
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The su(2) spin chain

Anomalous dimension ↔ Spin chain energy [Minahan, Zarembo ’02]

Spin chain with vacuum Z (↓) and excitations X (↑)

su(2) sector BMN-operator with two scalar excitations Tr(Z L−k−2XZ kX )

Planar one-loop dilatation operator on single-trace operators ↔ Spin chain
Hamiltonian H0 = 1− P

H0 |n1, n2, . . .⟩L =
M∑
j=1

(2 |. . . , nj , . . .⟩ − |. . . , nj − 1, . . .⟩ − |. . . , nj + 1, . . .⟩) ,

yields the energy and S matrix

E(p) = 4 sin
(p
2

)2
, S(pj , pk) = −

e i(pj+pk ) − 2e ipk + 1

e i(pj+pk ) − 2e ipj + 1
.
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The su(2) Bethe equations

Introducing the rapidity u = 1
2
cot p

2
, the S matrix can be written as

S(uj , uk) =
uj − uk − i

uj − uk + i
.

The Energy or anomalous dimension is

E =
M∑
j=1

1

u2
j +

1
4

.

For M excitations, the Bethe equations are given by:(
uj +

i
2

uj − i
2

)L∏
j ̸=k

uj − uk − i

uj − uk + i
= 1 , and

M∏
j=1

(
uj +

i
2

uj − i
2

)
= 1 .

Example with L = 4, M = 2: u1 = −u2 = 1√
12
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Hexagon-like formula from the spin chain

Bethe state:

|Ψ(p1, p2)⟩ =
∑

1≤n<m≤L

(
e ip1n+ip2m + S(p1, p2)e

ip2n+ip2m
)

︸ ︷︷ ︸
ψ(n,m)

|n,m⟩

Normalized cyclic state given by [Gaudin ’76][Korepin ’82]

OL =
|Ψ(p1, p2)⟩√

G L S12

∏
j(u

2
j +

1
4
)

Overlap:

c123 ∝
∑

1≤n<m≤ℓ12

ψ1(n,m) ψ2(L2 −m + 1, L2 − n + 1)
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Symmetries of the three-point function

Choosing Z as the vacuum

Take 1/2-BPS operator O(0) at x = 0

→ want to construct three translated operators O(x)
→ should preserve as much (super)symmetry as possible

Introduce the supertranslation generator [Basso, Komatsu, Vieira ’15]

Tκ = −iϵαα̇Pαα̇ + κϵȧaR
aȧ ,

Use Tκ to construct one parameter family of operators starting from O(0)

Ot,κ = et Tκ O(0) e−t Tκ .
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Constraining the hexagon form factor by symmetry

Charges commuting with Tκ form diagonal subalgebra psu(2|2)D

Write psu(2|2)2 excitations as χaȧ = ξa ⊗ ξ̇ȧ

Use bootstrap principle ⟨h|Ψ⟩ = 0

→ non-vanishing one-particle form factors for Y , Ȳ , D34̇, D43̇

→ two-particle form factors Beisert S matrix elements [Beisert ’06]

⟨h|χa1 ȧ1χa2 ȧ2⟩ = (−1)f ⟨ξa2ξa1 |S|ξ̇ȧ1 ξ̇ȧ2⟩

= (−1)f Ṡ ḃ1 ḃ2
ȧ1 ȧ2

h
χa1 ḃ1

h
χa2 ḃ2

.

→ Multi-particle form factor:

⟨h|χa1 ȧ1χa2 ȧ2 . . . χaN ȧN ⟩ = (−1)f ⟨ξaN . . . ξa2ξa1 |S|ξ̇ȧ1 ξ̇ȧ2 . . . ξ̇ȧN ⟩ .

[Basso, Komatsu, Vieira ’15]
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Constraining the scalar h-factor

Scalar factor h in the hexagon ←→ dressing phase S0 in the S matrix

Watson equation
Scattering with the full S matrix

⟨h|S |χAȦ(p1)χ
BḂ(p2)⟩ = ⟨h|χAȦ(p1)χ

BḂ(p2)⟩

Decoupling condition for a singlet

Cyclicity

⇒ Fixes the h-factor! [Basso, Komatsu, Vieira ’15]

⇒ Similar construction in AdS3 [Eden, DlP, Sonfdrini ’21]
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BḂ(p2)⟩ = ⟨h|χAȦ(p1)χ
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Simple example

A =
∑
α∪ᾱ

ω(α, ᾱ, ℓ) ⟨h|α⟩ ⟨h|ᾱ⟩ .

The splitting factor ω(α, ᾱ, ℓ) is given by

ω(α, ᾱ, ℓ) = (−1)|ᾱ|
∏
j∈ᾱ

e ipj ℓ
∏
k∈α
j<k

S(pj , pk) .

How to generalize formalism to higher-rank sectors?
→ replace by nested wave function [Basso, Coronado, Komatsu, Lam, Vieira, Zhong ’17]

Can we maintain the hexagon operator?
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Higher-rank models

Consider SU(3) sector with excitations X and Y

Consider the wave function ψ{X1,Y2}, with the scattering

|X1 Y2⟩ → T12 |Y2 X1⟩+ R12 |X2 Y1⟩ ,

with transmission and reflection amplitudes

T12 =
A12 − B12

2
and R12 =

A12 + B12

2
.

Introduce a second wave function ψ{Y1,X2} with scattering

|Y1 X2⟩ → T12 |X2 Y1⟩+ R12 |Y2 X1⟩ ,

and consider the sum

ψ(L) = gXY ψ{X1,Y2} + gYX ψ{Y1,X2} ,

with yet to be determined coefficients gXY and gYX .
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Extracting the coefficients from nesting

Level-0 vacuum of length L

M level-1 excitations move on level-0
vacuum with S10 = e ip and S11

jk = S(uj , uk)

k level-2 excitations move on level-1
vacuum of length M with S21, are
scattered by S22 and have a creation
amplitude f 21

|Y (v)⟩2 = f 21(v , u1) |Y1 X2⟩+ f 21(v , u2)S
21(v , u1) |X1 Y2⟩ .

Scattering leads to

gXYT12 + gYXR12 = f 21(v , u1)S
21(v , u2)S

11(u1, u2) ,

gXYR12 + gYXT12 = f 21(v , u2)S
11(u1, u2) .

⇒ Coefficients gXY and gYX inherit dependence on the auxiliary Bethe roots v .
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The nested hexagon

Cutting the SU(3) state

ω(α, ᾱ, ℓ)ψ{α}ψ{ᾱ} =



gXY ψ{Xu1
,Yu2

}ψ{} + gYX ψ{Yu1
,Xu2

}ψ{} ,

e ip2ℓ
(
gXY ψ{Xu1

}ψ{Yu2
} + gYX ψ{Yu1

}ψ{Xu2
}

)
,

e ip1ℓ (T12gYX + R12gXY )ψ{Xu2
}ψ{Yu1

}+

e ip1ℓ (T12gXY + R12gYX )ψ{Yu2
}ψ{Xu1

} ,

e i(p1+p2)ℓ
(
gXYψ{}ψ{Xu1

,Yu2
} + gYXψ{}ψ{Yu1

,Xu2
}

)
.

⇒ Agreement with free field theory
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Double excitations

Consider Tr(XX̄ + Y Ȳ + ZZ̄)

How can we describe Z̄?

−→ double excitations!

Can introduce creation amplitude in nested/matrix ansatz

Computations makes no further reference to the local structure of the state, i.e.

ψL
{X1,X̄2} =ψ{X1,X̄2} ψ{} − e i p2 ℓ ψ{X1} ψ{X̄2}−

e i p1 ℓ
[

T 2
12 ψ{X̄2} ψ{X1} + R2

12 ψ{X2} ψ{X̄1}

]
−

e i p1 ℓ
[
T12R12 ψ{Ȳ2} ψ{Y1 } + R12T12 ψ{Y2 } ψ{Ȳ1}

]
+

e i(p1+p2)ℓ ψ{} ψ{X1,X̄2} .
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Konishi

Let us evaluate ⟨KOL2 OL3⟩ with K = 1√
3
Tr(XX̄ + Y Ȳ + ZZ̄).

This yields (tree-level)

AQFT =
1√
3

√
L2L3 .

Using gXX̄ = gX̄X = −gY Ȳ = −gȲ Y and u2 = −u1 = 1√
12
, v = 0, w = 0

Aℓ12=1
hexagon(−u, u) =

8 gXX̄ u

(u − i
2
)(u + i

2
)2

=

√
3

2
.

We find agreement

AQFT =

(
u2 +

1

4

)
L1

√
L2L3 Ahexagon .

→ Analogous results for L1 = 3, 4, . . . with u = 1
2
, 1
2

√
1± 2√

5
, . . .
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2

√
1± 2√

5
, . . .
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Konishi

Let us evaluate ⟨KOL2 OL3⟩ with K = 1√
3
Tr(XX̄ + Y Ȳ + ZZ̄).

This yields (tree-level)

AQFT =
1√
3

√
L2L3 .

Using gXX̄ = gX̄X = −gY Ȳ = −gȲ Y and u2 = −u1 = 1√
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Deformed su(2) Bethe equations

Introduce twist factors into the Bethe equations [Beisert, Roiban ’05]

For two excitations, the Bethe equations are given by:(
uj +

i
2

uj − i
2

)L
uj − uk − i

uj − uk + i
= e2iLβ , and

(
u1 +

i
2

u1 − i
2

)(
u2 +

i
2

u2 − i
2

)
= e4iβ .

Solutions for L = 4:

BMN-like: u±
4 = ± 1

2
√

3
− 2β

3
± 8β2

9
√
3
− 16β3

27
± 112β4

81
√
3
+O(β5)

Vacuum descendant-like:

u±
4 = 3±i

√
3

8
1
β
+ −3±i

√
3

9
β − 4

405
(21∓ 8

√
3i)β3 +O(β5)
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Deformed SU(2) sector

Correlators can involve BMN-like and vacuum descendant-like operators

⟨B1B2O3⟩ , ⟨B1O′′
2O3⟩

Splitting factor

ω(α, ᾱ, ℓ) =
∏

ũi∈ᾱ
e2iβ(dα−dᾱ)

(
ui+

i
2

ui− i
2

)ℓ
e−2iβℓ∏

u1∈ᾱ ,u2∈α
u1−u2−i
u1−u2+i

Hexagon normalization N =
√

L1L2L3
G12S12G34S34

Special role of longitudinal excitations

⇒ Agreement with field theory results
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Asymptotic hexagon at one-loop

Consider three-point functions with all ℓij ≥ 1 and disregard wrapping
corrections

Rapidities from asymptotic Bethe equations

Need to include the measure factor

µ(u) =
−i

resv=u ⟨h̃|X̄ (v 2γ)X (u)⟩
= 1− g 2

(u2 + 1
4
)2

+O(g 4)

⇒ Agreement with field theory results
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Lagrangian insertion method

Consider n-point function

⟨O1 . . .On⟩ =
∫

DϕDADψ e i
∫
d4x0L(x0) O1 . . .On .

It follows that

g 2 ∂

∂g 2
⟨O1 . . .On⟩ = −i

∫
d4x0 ⟨L0 O1 . . .On⟩ .

Introduce Lagrange operator as L = 2 vacuum descendant

Integrability picture: Yang-Mills Lagrangian Tr(F 2) build from the excitations

Ψ42̇
1 , Ψ41̇

2 , Ψ32̇
3 , Ψ31̇

4 ,

with rapidities u1, . . . u4 and auxiliary rapidities v1, v2 and w1,w2
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Lagrangian insertion: A first test

Two-point function of BPS-operators is protected: ⟨L0 OL
1 OL

2⟩ = 0

⟨L0 OL
1 OL

2⟩ = 2
[
⟨h|Ψ42̇

1 Ψ41̇
2 Ψ32̇

3 Ψ31̇
4 ⟩+ ⟨h|Ψ42̇

1 Ψ31̇
4 ⟩ ⟨h|Ψ41̇

2 Ψ32̇
3 ⟩
]
+

g̃
[
⟨h|D43̇

1 ⟩ ⟨h|Ψ41̇
2 Ψ32̇

3 D34̇
4 ⟩+ ⟨h|D43̇

2 ⟩ ⟨h|Ψ42̇
1 D34̇

3 Ψ31̇
4 ⟩+

⟨h|D34̇
3 ⟩ ⟨h|Ψ42̇

1 D43̇
2 Ψ31̇

4 ⟩+ ⟨h|D34̇
4 ⟩ ⟨h|D43̇

1 Ψ41̇
2 Ψ32̇

3 ⟩+

⟨h|Y1⟩ ⟨h|Ψ41̇
2 Ψ32̇

3 Ȳ4⟩+ ⟨h|Ȳ2 ⟩ ⟨h|Ψ42̇
1 Y3 Ψ

31̇
4 ⟩ +

⟨h|Y3⟩ ⟨h|Ψ42̇
1 Ȳ2 Ψ

31̇
4 ⟩+ ⟨h|Ȳ4⟩ ⟨h|Y1 Ψ

41̇
2 Ψ32̇

3 ⟩
]
+

g̃ 2
[
⟨h|D43̇

1 D43̇
2 ⟩ ⟨h|D34̇

3 D34̇
4 ⟩+ ⟨h|D43̇

1 Ȳ2⟩ ⟨h|Y3 D
34̇
4 ⟩+

⟨h|Y1 D
43̇
2 ⟩ ⟨h|D34̇

3 Ȳ4⟩+ ⟨h|Y1 Ȳ2⟩ ⟨h|Y3 Ȳ4⟩
]

⟨L0 OL
1 OL

2⟩ → 4 g̃ 2 (1− 2 + 1) = 0

22 / 26



Motivation and review Higher-rank sectors and marginal deformations Lagrangian insertion method Conclusion and outlook

Future Applications?

Example: five-point function involving five protected operators

Process at one-loop involving two mirror excitations

Hard to evaluate [Fleury, Komatsu ’17],

[de Leeuw, Eden, DlP, Meier, Sfondrini ’19]

I =
∞∑

a,b=1

a−1,b−1∑
k,l=0

∫
du1 du2 a b

(u1 +
a
4
)2(u2 +

b
4
)2
W1W2Σ

abX k,l
k

→ Can the Lagrangian insertion method simplify the evaluation?
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Future Applications?

Colour-dressed hexagons allow to tessellate the torus

→ Non-planar two point functions [Eden, DlP, Sfondrini, Jiang ’17]

→ Many length 0 edges

→ Can the Lagrangian insertion method help?
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Conclusions and Outlook

Powerful tool to calculate correlation functions in N = 4 SYM

Maintain the hexagon operator for higher-rank sectors
importing the g -coefficients from the nested Bethe ansatz
local details of the wave functions eclipsed

Marginal deformations for certain classes of correlators involving
psu(1, 1|2) operators
→ Is there a hexagon operator for deformed theories?

Lagrangeoperator using double excitations
Four fermions on the hexagon

Simplest test of Lagrangian insertion method with hexagons → Loop
corrections for less simple two- and three-point functions?
→ Non-planar corrections?
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