Inverse Reynolds-Dominance approach to transient fluid dynamics

David Wagner ${ }^{1,3}$, Andrea Palermo ${ }^{1,2}$, Victor E. Ambruṣ ${ }^{1,3}$

${ }^{1}$ Institut für Theoretische Physik, Goethe Universität Frankfurt am Main, Germany
${ }^{2}$ Dipartimento di Fisica e Astronomia, Universitá di Firenze and INFN Sezione di Firenze, Italy
${ }^{3}$ Department of Physics, West University of Timișoara, Romania

Phys. Rev. D 106, 016013 (2022)

Wigner RCP, $3^{\text {rd }}$ April 2023

Outline

(1) Goal: Dissipative Hydrodynamics
(2) Tool: Kinetic theory
(3) Closing the system
(4) Transport coefficients and Entropy
(5) Conclusion

Motivation and goal

Hydrodynamics: Conservation equations

$$
\begin{equation*}
\partial_{\mu} T^{\mu \nu}=0, \quad \partial_{\mu} N^{\mu}=0 \tag{1}
\end{equation*}
$$

- Hydrodynamics: based on $(4+1=5)$ conservation equations

■ Ideal case: Sufficient (if equation of state is supplied)
\rightarrow Variables: ϵ, n, u^{μ}

- Dissipative case: Underdetermined
\rightarrow Variables: $\epsilon, n, u^{\mu}, \Pi, n^{\mu}, \pi^{\mu \nu}$
- Fundamental question of dissipative hydrodynamics: How to obtain information about the dissipative components of N^{μ} and $T^{\mu \nu}$?

Decomposition of conserved currents (Landau frame)

$$
\begin{align*}
N^{\mu} & =n u^{\mu}+n^{\mu} \tag{2}\\
T^{\mu \nu} & =\epsilon u^{\mu} u^{\nu}-(P+\Pi) \Delta^{\mu \nu}+\pi^{\mu \nu} \tag{3}
\end{align*}
$$

Projectors: $\Delta^{\mu \nu}:=g^{\mu \nu}-u^{\mu} u^{\nu}, \Delta_{\alpha \beta}^{\mu \nu}:=\left(\Delta_{\alpha}^{\mu} \Delta_{\beta}^{\nu}+\Delta_{\beta}^{\mu} \Delta_{\alpha}^{\nu}\right) / 2-\Delta^{\mu \nu} \Delta_{\alpha \beta} / 3$

First- and second-order hydrodynamics

- First-order hydro: Relate dissipative quantities to fluid-dynamical gradients

$$
\begin{equation*}
\Pi=-\zeta \theta, \quad n^{\mu}=\kappa I^{\mu}, \quad \pi^{\mu \nu}=2 \eta \sigma^{\mu \nu} \tag{4}
\end{equation*}
$$

- (In Eckart or Landau frame): Acausal!
- Second-order hydro: Treat dissipative quantitites as dynamical, provide relaxation equations

Relaxation equations

$$
\begin{align*}
\tau_{\Pi} \dot{\Pi}+\Pi & =-\zeta \theta+\text { h.o.t. } \tag{5a}\\
\tau_{n} \dot{n}^{\langle\mu\rangle}+n^{\mu} & =\kappa I^{\mu}+\text { h.o.t. } \tag{5b}\\
\tau_{\pi} \dot{\pi}^{\langle\mu \nu\rangle}+\pi^{\mu \nu} & =2 \eta \sigma^{\mu \nu}+\text { h.o.t. } \tag{5c}
\end{align*}
$$

- Needs input from microscopic theory
- This talk: Take kinetic theory as the foundation

$$
\theta:=\partial^{\mu} u_{\mu}, \sigma^{\mu \nu}:=\nabla^{\langle\mu} u^{\nu\rangle}, \nabla^{\mu}:=\Delta^{\mu \nu} \partial_{\nu}, I^{\mu}:=\nabla^{\mu}(\mu / T), A^{\langle\mu} B^{\nu\rangle}:=\Delta_{\alpha \beta}^{\mu \nu} A^{\alpha} B^{\beta}
$$

Kinetic Theory: Basics

- Describe system in (x, k)-phase space through one-particle distribution function $f(x, k)$
- Connection to hydrodynamics through conserved currents

Conserved quantities

$$
\begin{equation*}
N^{\mu}=\int \mathrm{d} K k^{\mu} f(x, k), \quad T^{\mu \nu}=\int \mathrm{d} K k^{\mu} k^{\nu} f(x, k) \tag{6}
\end{equation*}
$$

- Dynamics of $f(x, k)$ determine evolution of hydrodynamic quantities
- Governed by Boltzmann equation $k^{\mu} \partial_{\mu} f(x, k)=C[f]$
- Separate into equilibrium part $f_{0}(x, k)$ and deviation $\delta f(x, k)$
- $f_{0}(x, k)$ determined by $C\left[f_{0}\right]=0$
- Binary elastic collisions: $f_{0}(x, k)=\left[e^{-\alpha_{0}(x)+\beta_{0}(x) u^{\mu}(x) k_{\mu}}+a\right]^{-1}$
- $a \in\{-1,0,1\}$ determined by statistics of particles
- $\alpha_{0}, \beta_{0}, u^{\mu}$: Lagrange multipliers

$$
\mathrm{d} K:=\mathrm{d}^{3} k /\left[(2 \pi)^{3} k^{0}\right], E_{\mathbf{k}}:=u^{\mu} k_{\mu}
$$

Moment expansion

- Question: Which parts of $\delta f(x, k)$ in momentum space are important for hydrodynamics?
- Expand in terms of complete and orthogonal basis of irreducible tensors $1, k^{\langle\mu\rangle}, k^{\langle\mu} k^{\nu\rangle}, \cdots$

■ Equivalent to spherical harmonics (angular part) and a radial part

Expansion of δf

$$
\begin{equation*}
\delta f(x, k)=f_{0} \tilde{f}_{0} \sum_{\ell=0}^{\infty} \sum_{n=0}^{N_{\ell}} \mathcal{H}_{\mathrm{k} n}^{(\ell)} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \rho_{n, \mu_{1} \cdots \mu_{\ell}}(x) \tag{7}
\end{equation*}
$$

- Irreducible moments $\rho_{n}^{\mu_{1} \cdots \mu_{\ell}}$ carry all information

Irreducible moments

$$
\begin{equation*}
\rho_{r}^{\mu_{1} \cdots \mu_{\ell}}(x):=\int \mathrm{d} K E_{\mathbf{k}}^{r} k^{\left\langle\mu_{1}\right.} \cdots k^{\left.\mu_{\ell}\right\rangle} \delta f(x, k) \tag{8}
\end{equation*}
$$

[^0]
Equations of motion

Boltzmann equation

$$
\begin{equation*}
u^{\mu} \partial_{\mu} \delta f=E_{\mathbf{k}}^{-1} C-u^{\mu} \partial_{\mu} f_{0}-E_{\mathbf{k}}^{-1} k^{\mu} \nabla_{\mu}\left(f_{0}+\delta f\right) \tag{9}
\end{equation*}
$$

- Boltzmann equation determines evolution of all moments
- Infinite set of ordinary differential equations
- Coupled (linearly) through generalized collision term $\mathcal{A}_{r n}^{(\ell)}$

Moment equations

$$
\begin{array}{lll}
(\ell=0) & \dot{\rho}_{r}+\sum_{n=0, \neq 1,2}^{N_{0}} \mathcal{A}_{r n}^{(0)} \rho_{n} & =\alpha_{r}^{(0)} \theta+\text { h.o.t. } \\
(\ell=1) & \dot{\rho}_{r}^{\langle\mu\rangle}+\sum_{n=0, \neq 1}^{N_{1}} \mathcal{A}_{r n}^{(1)} \rho_{n}^{\mu} & =\alpha_{r}^{(1)} I^{\mu}+\text { h.o.t. } \\
(\ell=2) & \dot{\rho}_{r}^{\langle\mu \nu\rangle}+\sum_{n=0}^{N_{2}} \mathcal{A}_{r n}^{(2)} \rho_{n}^{\mu \nu} & =2 \alpha_{r}^{(2)} \sigma^{\mu \nu}+\text { h.o.t. } \\
(\ell>2) & \dot{\rho}_{r}^{\left\langle\mu_{1} \cdots \mu_{\ell}\right\rangle}+\sum_{n=0}^{N_{\ell}} \mathcal{A}_{r n}^{(\ell)} \rho_{n}^{\mu_{1} \cdots \mu_{\ell}} & =\text { h.o.t. } \tag{10d}
\end{array}
$$

- How to close this system?

Matching conditions: $\rho_{1}=\rho_{2}=\rho_{1}^{\mu}=0$

Truncation and power counting

- Basic idea: Power-counting scheme to second order in two small quantities:

1. Knudsen number $\mathrm{Kn}:=\lambda_{\mathrm{mfp}} / \lambda_{\text {hydro }}$, and
2. inverse Reynolds numbers $\operatorname{Re}^{-1}:=\delta f / f_{0}$

- Interested in the evolution of $T^{\mu \nu}$ and N^{μ}
\rightarrow Benchmark: Evolution equations for $\Pi=-\left(m^{2} / 3\right) \rho_{0}, n^{\mu}=\rho_{0}^{\mu}, \pi^{\mu \nu}=\rho_{0}^{\mu \nu}$
\rightarrow Only interested in moments with $\ell \leq 2$
- $\rho_{r}^{\mu_{1} \cdots \mu_{\ell>2}}$ give rise to corrections of order $\mathcal{O}\left(\mathrm{Kn}^{2} \mathrm{Re}^{-1}, \mathrm{Kn}^{3}\right)$

Moment equations

$$
\begin{align*}
\sum_{n=0, \neq 1,2}^{N_{0}} \tau_{r n}^{(0)} \dot{\rho}_{n}+\rho_{r} & =\zeta_{r} \theta+\text { h.o.t. } \tag{11a}\\
\sum_{n=0, \neq 1}^{N_{1}} \tau_{r n}^{(1)} \dot{\rho}_{n}^{\langle\mu\rangle}+\rho_{r}^{\mu} & =\kappa_{r} I^{\mu}+\text { h.o.t. } \tag{11b}\\
\sum_{n=0}^{N_{2}} \tau_{r n}^{(2)} \dot{\rho}_{n}^{\langle\mu \nu\rangle}+\rho_{r}^{\mu \nu} & =2 \eta_{r} \sigma^{\mu \nu}+\text { h.o.t. } \tag{11c}
\end{align*}
$$

- Still coupled system of $N_{0}+3 N_{1}+5 N_{2}$ equations
- How to decouple the remaining equations?

$$
\tau^{(\ell)}:=\left(\mathcal{A}^{(\ell)}\right)^{-1}
$$

IReD: Idea

- General idea: Relate moments through their Navier-Stokes solutions

IReD: Asymptotic matching

$$
\begin{align*}
\rho_{r}=\zeta_{r} \theta+\mathcal{O}\left(\mathrm{KnRe}^{-1}\right) & \Rightarrow \rho_{r}=\frac{\zeta_{r}}{\zeta_{n}} \rho_{n}+\mathcal{O}\left(\mathrm{KnRe}^{-1}\right) \tag{12}\\
\rho_{r}^{\mu}=\kappa_{r} I^{\mu}+\mathcal{O}\left(\mathrm{KnRe}^{-1}\right) & \Rightarrow \rho_{r}^{\mu}=\frac{\kappa_{r}}{\kappa_{n}} \rho_{n}^{\mu}+\mathcal{O}\left(\mathrm{KnRe}^{-1}\right) \tag{13}\\
\rho_{r}^{\mu \nu}=2 \eta_{r} \sigma^{\mu \nu}+\mathcal{O}\left(\mathrm{KnRe}^{-1}\right) & \Rightarrow \rho_{r}^{\mu \nu}=\frac{\eta_{r}}{\eta_{n}} \rho_{n}^{\mu \nu}+\mathcal{O}\left(\mathrm{KnRe}^{-1}\right) \tag{14}
\end{align*}
$$

- Crucial: No terms $\sim \mathcal{O}(\mathrm{Kn})$ appear in asymptotic matching $\left(\rightarrow \mathrm{Re}^{-1}\right.$ dominance)
- Equations of motion can be closed in terms of any set of moments $\rho_{n}, \rho_{n}^{\mu}, \rho_{n}^{\mu \nu}$

Also known as "order-of-magnitude approximation" J. A. Fotakis, E. Molnár, H. Niemi, C. Greiner, D. H. Rischke, Phys. Rev. D 106, 036009 (2022)

IReD: Closure

DW, A. Palermo, V. E. Ambruș, Phys. Rev. D 106, 016013 (2022)

- Choose $n=0$ to obtain closure in terms of hydrodynamic quantities

Hydrodynamic asymptotic matching

$$
\begin{align*}
\rho_{r} & =-\frac{\zeta_{r}}{\zeta_{0}} \frac{3}{m^{2}} \Pi+\mathcal{O}\left(\mathrm{KnRe}^{-1}\right) \tag{15}\\
\rho_{r}^{\mu} & =\frac{\kappa_{r}}{\kappa_{0}} n^{\mu}+\mathcal{O}\left(\mathrm{KnRe}^{-1}\right) \tag{16}\\
\rho_{r}^{\mu \nu} & =\frac{\eta_{r}}{\eta_{0}} \pi^{\mu \nu}+\mathcal{O}\left(\mathrm{KnRe}^{-1}\right) \tag{17}
\end{align*}
$$

- Use asymptotic matching to absorb effects of higher-order moments into (resummed) transport coefficients while staying accurate to second order

Replacement (example)

$$
\begin{equation*}
\theta \sum_{n=0}^{N_{2}} \tau_{0 n}^{(2)} \rho_{n}^{\mu \nu}=\theta \pi^{\mu \nu} \sum_{n=0}^{N_{2}} \tau_{0 n}^{(2)} \frac{\eta_{r}}{\eta_{0}}+\mathcal{O}\left(\mathrm{Kn}^{2} \mathrm{Re}^{-1}\right) \tag{18}
\end{equation*}
$$

Obtaining hydrodynamics

- Use asymptotic matching conditions to express all irreducible moments through dissipative quantities
- Discard terms of order $\mathcal{O}\left(\mathrm{Kn}^{2} \mathrm{Re}^{-1}\right)$ or higher

Hydrodynamic relaxation equations

$$
\begin{align*}
\tau_{\Pi} \dot{\Pi}+\Pi & =-\zeta_{0} \theta+\mathcal{J} \tag{19a}\\
\tau_{n} \dot{n}^{\langle\mu\rangle}+n^{\mu} & =\kappa_{0} n^{\mu}+\mathcal{J}^{\mu} \tag{19b}\\
\tau_{\pi} \dot{\pi}^{\langle\mu \nu\rangle}+\pi^{\mu \nu} & =2 \eta_{0} \sigma^{\mu \nu}+\mathcal{J}^{\mu \nu} \tag{19c}
\end{align*}
$$

- First-order contributions $\sim \mathcal{O}\left(\mathrm{Re}^{-1}\right)$ and $\sim \mathcal{O}(\mathrm{Kn})$
- Second-order contributions $\sim \mathcal{O}\left(\mathrm{Re}^{-1}\right), \sim \mathcal{O}(\mathrm{Kn}), \sim \mathcal{O}\left(\mathrm{KnRe}^{-1}\right)$

■ No terms $\sim \mathcal{O}\left(\mathrm{Kn}^{2}\right)$ which could lead to parabolic equations
\rightarrow Advantage over famous DNMR approach
G. S. Denicol, H. Niemi, E. Molnar, D. H. Rischke, Phys. Rev. D 85, 114047 (2012)

Transport coefficients

Second-order terms

$$
\begin{align*}
\mathcal{J}= & -\ell_{\Pi n} \nabla_{\mu} n^{\mu}-\tau_{\Pi n} n_{\mu} \dot{u}^{\mu}-\delta_{\Pi \Pi} \Pi \theta-\lambda_{\Pi n} n_{\mu} \nabla^{\mu} \alpha+\lambda_{\Pi \pi} \pi^{\mu \nu} \sigma_{\mu \nu} \tag{20}\\
\mathcal{J}^{\mu}= & -\tau_{n} n_{\nu} \omega^{\nu \mu}-\delta_{n} n^{\mu} \theta-\ell_{n \Pi} \nabla^{\mu} \Pi+\ell_{n \pi} \Delta^{\mu \nu} \nabla_{\lambda} \pi^{\lambda}{ }_{\nu}+\tau_{n \Pi} \Pi \dot{u}^{\mu} \\
& -\tau_{n \pi} \pi^{\mu \nu} \dot{u}_{\nu}-\lambda_{n n} n_{\nu} \sigma^{\mu \nu}+\lambda_{n \Pi} \Pi \nabla^{\mu} \alpha-\lambda_{n \pi} \pi^{\mu \nu} \nabla_{\nu} \alpha \tag{21}\\
\mathcal{J}^{\mu \nu}= & 2 \tau_{\pi} \pi_{\lambda}^{\langle\mu} \omega^{\nu\rangle \lambda}-\delta_{\pi \pi} \pi^{\mu \nu} \theta-\tau_{\pi \pi} \pi^{\lambda\langle\mu} \sigma_{\lambda}^{\nu\rangle}+\lambda_{\pi \Pi} \Pi \sigma^{\mu \nu} \\
& -\tau_{\pi n} n^{\langle\mu} \dot{u}^{\nu\rangle}+\ell_{\pi n} \nabla^{\langle\mu} n^{\nu\rangle}+\lambda_{\pi n} n^{\langle\mu} \nabla^{\nu\rangle} \alpha \tag{22}
\end{align*}
$$

- All transport coefficients calculable to any finite order $N_{0} \geq 2, N_{1} \geq 1, N_{2} \geq 0$
- Red ones determine the behaviour of the linearized theory

Interlude: Convergence of the expansion

- Simple model with constant cross-section: Generalized collision terms can be calculated analytically

DW, V. E. Ambruș, E. Molnár, in preparation

- All coefficients converge, but at different rates

Entropy analysis

Entropy current

$$
\begin{align*}
S^{\mu} & =S_{(0)}^{\mu}+S_{(1)}^{\mu}+S_{(2)}^{\mu}+\cdots \tag{23}\\
S_{(0)}^{\mu} & =s u^{\mu} \tag{24}\\
S_{(1)}^{\mu} & =-\alpha n^{\mu} \tag{25}\\
S_{(2)}^{\mu} & =-\frac{1}{2} u^{\mu}\left(\delta_{0} \Pi^{2}+\delta_{1} n^{\alpha} n_{\alpha}+\delta_{2} \pi^{\alpha \beta} \pi_{\alpha \beta}\right)-\gamma_{0} \Pi n^{\mu}-\gamma_{1} \pi^{\mu \nu} n_{\nu} \tag{26}
\end{align*}
$$

- Idea: Construct entropy current up to second order in dissipative quantities
- Take divergence and assert $\partial_{\mu} S^{\mu} \geq 0$
- Guaranteed by bringing the divergence into quadratic form,

$$
\begin{equation*}
\partial_{\mu} S^{\mu} \sim \Pi^{2},-n^{\mu} n_{\mu}, \pi^{\mu \nu} \pi_{\mu \nu} \tag{27}
\end{equation*}
$$

- Forces dissipative quantities to obey relaxation equations
- Coefficients are related!
- Which conditions do we get?

$2^{\text {nd }}$ law: Conditions

- Simple setup:

■ Constant cross section
■ Massless limit

URHS conditions

- Automatically fulfilled

$$
\begin{equation*}
\delta_{n n}=\tau_{n}, \quad \delta_{\pi \pi}=4 \tau_{\pi} / 3, \quad \frac{\tau_{n \pi}}{\ell_{n \pi}}+\frac{\tau_{\pi n}}{\ell_{\pi n}}=\frac{5}{\epsilon+P} \tag{28}
\end{equation*}
$$

Nontrivial conditions

- Fulfilled in IReD in the limit $N_{1}, N_{2} \rightarrow \infty$
- Not fulfilled in DNMR

$$
\begin{equation*}
\frac{\ell_{n \pi}}{\kappa}=-\frac{\ell_{\pi n}}{2 \eta T}, \quad \frac{\ell_{n \Pi}}{\kappa}=-\frac{\ell_{\Pi n}}{\zeta T} \tag{29}
\end{equation*}
$$

- Coefficients obtained using IReD are compatible with second law
\rightarrow Thermodynamic completion of DNMR
L. Gavassino, arXiv: 2210.05067

Conclusion and Outlook

- The IReD approach to relativistic dissipative hydrodynamics relates irreducible moments ($\rho_{r}, \rho_{r}^{\mu}, \rho_{r}^{\mu \nu}$) directly to dissipative quantities ($\Pi, n^{\mu}, \pi^{\mu \nu}$)
\rightarrow No terms $\sim \mathcal{O}\left(\mathrm{Kn}^{2}\right)$ appear in equations of motion
\rightarrow Equations stay hyperbolic
- When an interaction is specified, all first- and second-order transport coefficients can be calculated
- Values of the transport coefficients are consistent with the second law of thermodynamics

Appendix

Hard spheres collision matrix

- The collision matrix is linked with the expansion of $\delta f_{\mathbf{k}}$ with respect to a complete basis,

$$
\delta f_{\mathbf{k}}=f_{0 \mathbf{k}} \sum_{\ell=0}^{\infty} \sum_{n=0}^{N_{\ell}} \rho_{n}^{\mu_{1} \cdots \mu_{\ell}} k_{\left\langle\mu_{1}\right.} \cdots k_{\left.\mu_{\ell}\right\rangle} \mathcal{H}_{\mathbf{k} n}^{(\ell)}
$$

where $\mathcal{H}_{\mathbf{k} n}^{(\ell)}$ is defined such that $\left.\rho_{n}^{\mu_{1} \cdots \mu_{\ell}} \equiv \int d K E_{\mathbf{k}}^{n} k^{\left\langle\mu_{1}\right.} \cdots k^{\mu}{ }_{\ell}\right\rangle \quad \delta f_{\mathbf{k}}$.

- The linearized collision integrals are given by

$$
\begin{aligned}
& \mathcal{A}_{r n}^{(\ell)}=\frac{1}{\nu(2 \ell+1)} \int d K d K^{\prime} d P d P^{\prime} W_{\mathbf{k k}^{\prime} \rightarrow \mathbf{p} \mathbf{p}^{\prime}} f_{0 \mathbf{k}} f_{0 \mathbf{k}^{\prime}} E_{\mathbf{k}}^{r-1} k^{\left\langle\nu_{1}\right.} \cdots k^{\nu \ell\rangle} \\
& \quad \times\left(\mathcal{H}_{\mathbf{k} n}^{(\ell)} k_{\left\langle\nu_{1}\right.} \cdots k_{\left.\nu_{\ell}\right\rangle}+\mathcal{H}_{\mathbf{k}^{\prime} n}^{(\ell)} k_{\left\langle\nu_{1}\right.}^{\prime} \cdots k_{\left.\nu_{\ell}\right\rangle}^{\prime}-\mathcal{H}_{\mathbf{p} n}^{(\ell)} p_{\left\langle\nu_{1}\right.} \cdots p_{\left.\nu_{\ell}\right\rangle}-\mathcal{H}_{\mathbf{p}^{\prime} n}^{(\ell)} p_{\left\langle\nu_{1}\right.}^{\prime} \cdots p_{\left.\nu_{\ell}\right\rangle}^{\prime}\right),
\end{aligned}
$$

- In the case of the UR ideal HS gas, $W_{\mathbf{k k}^{\prime} \rightarrow \mathbf{p p}^{\prime}}=s(2 \pi)^{6} \delta^{(4)}\left(k+k^{\prime}-p-p^{\prime}\right) \frac{\sigma_{T} \nu}{4 \pi}$ and

$$
\begin{array}{rlrl}
\mathcal{A}_{r=0, n}^{(1)}= & \frac{16(-\beta)^{n} g^{2}}{\lambda_{\mathrm{mfp}}(n+3)!}\left[S_{n}^{(1)}\left(N_{1}\right)-\frac{\delta_{n 0}}{2}\right], & \mathcal{A}_{r=0, n}^{(2)}= & \frac{432 g^{2}(-\beta)^{n}}{\lambda_{\mathrm{mfp}}(n+5)!} S_{n}^{(2)}\left(N_{2}\right), \\
\mathcal{A}_{r>0, n \leq r}^{(1)}= & \frac{g^{2} \beta^{n-r}(r+2)![n(r+4)-r]}{\lambda_{\operatorname{mfp}}(n+3)!r} & \mathcal{A}_{r>0, n \leq r}^{(2)}= & \frac{g^{2} \beta^{n-r}(r+4)!(n+1)}{\lambda_{\operatorname{mfp}}(n+5)!r(r+1)} \\
& \times\left(\delta_{n r}+\delta_{n 0}-\frac{2}{r+1}\right), & \times(9 n+n r-4 r)\left(\delta_{n r}-\frac{2}{r+2}\right),
\end{array}
$$

while $\mathcal{A}_{r>0, n>r}^{(1)}=\mathcal{A}_{r>0, n>r}^{(2)}=0$ and $S_{n}^{(\ell)}\left(N_{\ell}\right)=\sum_{m=n}^{N_{\ell}}\binom{m}{n} \frac{1}{(m+\ell)(m+\ell+1)}$.

DNMR: Idea

G. S. Denicol, H. Niemi, E. Molnar, D. H. Rischke, Phys. Rev. D 85, 114047 (2012)

- Idea: Only the slowest microscopic timescales are of macroscopic importance (Separation of scales)
- Program to follow:

1. Find the eigenmodes $X_{r}^{(\ell)}$ of the linearized collision kernel $\mathcal{A}^{(\ell)}$
2. Retain dynamics only of slowest eigenmodes
3. Express dynamics of hydrodynamic quantities through eigenmodes

- First step: Diagonalize (inverse) collision matrices

$$
\tau^{(\ell)} \equiv\left(\Omega^{(\ell)}\right)^{-1} \operatorname{diag}\left(\tau_{1}^{(\ell)}, \tau_{2}^{(\ell)}, \cdots\right) \Omega^{(\ell)}
$$

- Sort eigenvalues in decreasing order
- Lowest-order eigenmodes relax slowest

Relaxation equation of eigenmodes

$$
\begin{align*}
\tau_{r}^{(0)} \dot{X}_{r}+X_{r} & =-\sum_{n=0}^{N_{0}} \Omega_{r n}^{(0)} \zeta_{n} \theta+\text { h.o.t. } \tag{30a}\\
\tau_{r}^{(1)} \dot{X}_{r}^{\langle\mu\rangle}+X_{r}^{\mu} & =\sum_{n=0}^{N_{1}} \Omega_{r n}^{(1)} \kappa_{n} I^{\mu}+\text { h.o.t. } \tag{30b}\\
\tau_{r}^{(2)} \dot{X}_{r}^{\langle\mu \nu\rangle}+X_{r}^{\mu \nu} & =2 \sum_{n=0}^{N_{2}} \Omega_{r n}^{(2)} \eta_{n} \sigma^{\mu \nu}+\text { h.o.t. } \tag{30c}
\end{align*}
$$

DNMR: Separation of timescales

- Apply the separation of scales idea and retain dynamics of X_{0}, X_{0}^{μ} and $X_{0}^{\mu \nu}$
- Crucial step: Higher moments are approximated by their Navier-Stokes solutions

$$
X_{r>2}=-\sum_{n=0}^{N_{0}} \Omega_{r n}^{(0)} \zeta_{n} \theta, X_{r>1}^{\mu}=\sum_{n=0}^{N_{1}} \Omega_{r n}^{(1)} \kappa_{n} I^{\mu}, X_{r>0}^{\mu \nu}=2 \sum_{n=0}^{N_{2}} \Omega_{r n}^{(2)} \eta_{n} \sigma^{\mu \nu}
$$

- Relate irreducible moments back to dissipative quantities via $\rho_{r}^{\mu_{1} \cdots \mu_{\ell}}=\sum_{n=0}^{N_{\ell}} \Omega_{r n}^{(\ell)} X_{n}^{\mu_{1} \cdots \mu_{\ell}}$ and apply approximation

DNMR: Asymptotic matching

$$
\begin{align*}
m^{2} / 3 \rho_{r} & =-\Omega_{r 0}^{(0)} \Pi-\left(\zeta_{r}-\Omega_{r 0}^{(0)} \zeta_{0}\right) \theta+\mathcal{O}\left(\mathrm{KnRe}^{-1}\right) \tag{31a}\\
\rho_{r}^{\mu} & =\Omega_{r 0}^{(1)} n^{\mu}+\left(\kappa_{r}-\Omega_{r 0}^{(1)} \kappa_{0}\right) I^{\mu}+\mathcal{O}\left(\mathrm{KnRe}^{-1}\right) \tag{31b}\\
\rho_{r}^{\mu \nu} & =\Omega_{r 0}^{(2)} \pi^{\mu \nu}+\left(\eta_{r}-\Omega_{r 0}^{(2)} \eta_{0}\right) \sigma^{\mu \nu}+\mathcal{O}\left(\mathrm{KnRe}^{-1}\right) \tag{31c}
\end{align*}
$$

- This closes the system of equations

DNMR: Obtaining hydrodynamics

- Use asymptotic matching to express all irreducible moments through dissipative quantities and fluid-dynamical gradients
- Discard terms of order $\mathcal{O}\left(\mathrm{Kn}^{2} \mathrm{Re}^{-1}\right)$ or higher

Hydrodynamic relaxation equations (DNMR)

$$
\begin{align*}
\tau_{\Pi} \dot{\Pi}+\Pi & =-\zeta_{0} \theta+\mathcal{J}+\mathcal{K} \tag{32a}\\
\tau_{n} \dot{n}^{\langle\mu\rangle}+n^{\mu} & =\kappa_{0} n^{\mu}+\mathcal{J}^{\mu}+\mathcal{K}^{\mu} \tag{32b}\\
\tau_{\pi} \dot{\pi}^{\langle\mu \nu\rangle}+\pi^{\mu \nu} & =2 \eta_{0} \sigma^{\mu \nu}+\mathcal{J}^{\mu \nu}+\mathcal{K}^{\mu \nu} \tag{32c}
\end{align*}
$$

- First-order contributions $\sim \mathcal{O}\left(\mathrm{Re}^{-1}\right)$ and $\sim \mathcal{O}(\mathrm{Kn})$
- Second-order contributions $\sim \mathcal{O}\left(\mathrm{KnRe}^{-1}\right)$ and $\sim \mathcal{O}\left(\mathrm{Kn}^{2}\right)$
- Contributions of order $\mathcal{O}\left(\mathrm{Kn}^{2}\right)$ result directly from asymptotic matching

■ Example: $\theta \rho_{r} \rightarrow \theta \Pi, \theta^{2}$

The issue: Parabolic terms

- Consider the second-order terms of tensor-rank two:

$$
\begin{align*}
\mathcal{J}^{\mu \nu}= & 2 \tau_{\pi} \pi_{\lambda}^{\langle\mu} \omega^{\nu\rangle \lambda}-\delta_{\pi \pi} \pi^{\mu \nu} \theta-\tau_{\pi \pi} \pi^{\lambda\langle\mu} \sigma_{\lambda}^{\nu\rangle}+\lambda_{\pi \Pi} \Pi \sigma^{\mu \nu}-\tau_{\pi n} n^{\langle\mu} F^{\nu\rangle} \\
& +\ell_{\pi n} \nabla^{\langle\mu} n^{\nu\rangle}+\lambda_{\pi n} n^{\langle\mu} I^{\nu\rangle} \tag{33}\\
\mathcal{K}^{\mu \nu}= & \tilde{\eta}_{1} \omega^{\lambda\langle\mu} \omega^{\nu\rangle}{ }_{\lambda}+\tilde{\eta}_{2} \theta \sigma^{\mu \nu}+\tilde{\eta}_{3} \sigma^{\lambda\langle\mu} \sigma_{\lambda}^{\nu\rangle}+\tilde{\eta}_{4} \sigma_{\lambda}^{\langle\mu} \omega^{\nu\rangle \lambda}+\tilde{\eta}_{5} I^{\langle\mu} I^{\nu\rangle} \\
& +\tilde{\eta}_{6} F^{\langle\mu} F^{\nu\rangle}+\tilde{\eta}_{7} I^{\langle\mu} F^{\nu\rangle}+\tilde{\eta}_{8} \nabla^{\langle\mu} I^{\nu\rangle}+\tilde{\eta}_{9} \nabla^{\langle\mu} F^{\nu\rangle} \tag{34}
\end{align*}
$$

- Second derivatives of fluid-dynamical quantities appear
\rightarrow Equations become parabolic!
\rightarrow Theory becomes acausal and thus unstable
- Usual procedure: Ignore terms of order $\mathcal{O}\left(\mathrm{Kn}^{2}\right)$
\rightarrow Equations are hyperbolic again
- IReD is a way to ensure $\mathcal{K}=\mathcal{K}^{\mu}=\mathcal{K}^{\mu \nu}=0$ from the beginning!

$$
F^{\mu}:=\nabla^{\mu} P_{0}, \omega^{\mu \nu}:=\left(\nabla^{\mu} u^{\nu}-\nabla^{\nu} u^{\mu}\right) / 2
$$

[^0]: $\tilde{f}_{0}:=1-a f_{0}$

