
Automatic differentiation of photonic circuits

Zoltán Kolarovszki

Eötvös Loránd University
Wigner Research Centre for Physics

May 15, 2023

Piquasso team

2 / 21

Outline

Photonic Quantum Computing

Photonic circuits as neural networks

Why simulate a photonic quantum computer?

Piquasso simulator framework

Tensorflow integration

3 / 21

Photonic Quantum Computing

Photonic circuits as neural networks

Why simulate a photonic quantum computer?

Piquasso simulator framework

Tensorflow integration

Photonic Quantum Computing
A photonic quantum computer stores information in independent optical modes, called
qumodes.

4 / 21

Quantum advantage
The Quantum Information Group of USTC in Hefei (led by Jian-Wei Pan)
demonstrated advantage over classical computation in 2020 (with improvements in
2021 and 2023, in the latter mentioning our method as classical benchmark).

5 / 21

Modeling an optical circuit

|n1⟩

|n2⟩

|n3⟩

|n4⟩

|n5⟩

|n6⟩

Initial state

Gates

Final state

States can be written as:

|ψ⟩ :=
∑

n1,...,nd∈Zd
≥0

cn1,...,nd |n1 . . . nd⟩ . (1)

Example state: |ψ⟩ = 1√
2
|01⟩+ 1√

2
|10⟩ .

6 / 21

Simple example

Circuit with a single beamsplitter gate:

|1⟩

|0⟩
B(θ, ϕ) ?

Output state:
? = B(θ, ϕ) |10⟩ = cos θ|10⟩+ e iϕ sin θ|01⟩. (2)

Probability distribution: (using Born’s rule)

p(output = 10) = cos2 θ, (3)

p(output = 01) = sin2 θ.

7 / 21

Photonic Quantum Computing

Photonic circuits as neural networks

Why simulate a photonic quantum computer?

Piquasso simulator framework

Tensorflow integration

Idea: Photonic circuits as neural networks?

Qubit-based quantum computing =⇒ measurement outputs are generally discrete.

Photonic quantum computing =⇒ measurement outputs are continuous.

photonic circuit ∼ neural network

gate parameters ∼ weights

Circuits are differentiable, e.g.

∂θB(θ, ϕ) |01⟩ = − sin θ |01⟩+ e iϕ cos θ |10⟩ .

8 / 21

Neural network model in photonic quantum computing

A classical neural network model is

y⃗ = Ln . . .L1(x⃗), (4)

▶ x⃗ input, y⃗ output,

▶ Li neural network layer,

Li = φ(Wx⃗ + b⃗) (5)

▶ Wx⃗ + b⃗ is linear transformation,

▶ φ nonlinear “activation” function.

How can we adapt this contruction to photonic quantum computing?

9 / 21

Photonic Analogue

∣∣ψ′〉 = Ln . . .L1 |ψ⟩ , (6)

▶ |ψ⟩ input, |ψ′⟩ output state,
▶ Li := Li (θ⃗): continuous-variable quantum neural network layers (CVNN),

▶ θ⃗: set of parameters ⇐⇒ weights.

Li should be the composition of a linear and a non-linear transformation.

10 / 21

Continuous-Variable Neural Network layer

U1(θ
(1)
i , ϕ

(1)
i)

S1(r1)

S2(r2)

S3(r3)

S4(r4)

S5(r5)

S6(r6)

U2(θ
(2)
i , ϕ

(2)
i)

D1(α1)

D2(α2)

D3(α3)

D4(α4)

D5(α5)

D6(α6)

K1(κ1)

K2(κ2)

K3(κ3)

K4(κ4)

K5(κ5)

K6(κ6)

1st interferometer

Squeezings

2nd interferometer

Displacements

Kerr
(nonlinear)

L := K ◦ D ◦ U2 ◦ S ◦ U1 11 / 21

Photonic Quantum Computing

Photonic circuits as neural networks

Why simulate a photonic quantum computer?

Piquasso simulator framework

Tensorflow integration

Simulating photonic quantum circuits is needed!

▶ Photonic quantum computers are still not widely available,

▶ Trying to approximate quantum computing may inspire better classical
algorithms,

▶ Can be used to test hardware,

▶ Aids implementation of quantum circuits (state learning, gate synthesis).

However: Simulating photonic quantum circuts is classically hard!

12 / 21

Example problem: State learning

Given a photonic quantum state |ψ⟩, how can we prepare it using a photonic
quantum computer?

Solution: CVNN layers!

Cost function:
J(|ψ⟩) = ∥|ψ⟩ − |ψ∗⟩∥1 (7)

|ψ∗⟩ = Ln ◦ · · · ◦ L1 |0⟩ , Li CVNN layers. (8)

Differentiating CVNN layers =⇒ backpropagation.

13 / 21

Photonic Quantum Computing

Photonic circuits as neural networks

Why simulate a photonic quantum computer?

Piquasso simulator framework

Tensorflow integration

Simulating a photonic quantum computer with Piquasso
We are developing a new simulator framework written in Python called Piquasso.

We wanted to have a simulator we could experiment with and we could extend and
improve by ourselves.

It is also beneficial to have multiple simulators for testing hardware.

Main goals:

▶ Extensibility (ability to write plugins),

▶ High performance (via C++ PiquassoBoost plugin),

▶ Reproducibility,

▶ Clean code.

Piquasso is open source, available on PyPI:

pip install piquasso

14 / 21

Simulation of nonlinear gates

Nonlinear gates (the Kerr gate) can only be simulated using the Fock simulator,
where states are stored with their coefficients in the Fock basis.

We need to differentiate the Fock simulator.

Example: Coherent state

|α⟩ := e−
|α|2
2

∞∑
n=0

αn

√
n!

|n⟩ , (9)

but we cannot store every coefficients, we need a truncation:

|α⟩ := e−
|α|2
2

c∑
n=0

αn

√
n!

|n⟩ . (10)

15 / 21

2 ways of truncating Fock space
The Fock simulation is an approximation.

One has to make a choice which occupation numbers are considered. When imposed,
makes the dimension of the space of the system finite.

Strawberry Fields: Local cutoff
Constraint on the particle number by mode. State vector size:

cd , c : local cutoff, d : number of modes. (11)

Piquasso: Global cutoff
Constraint on particle number on the whole system. State vector size:(

d + c − 1

c − 1

)
, c : global cutoff, d : number of modes. (12)

Cutoff results in photon loss.

16 / 21

Photon loss in Piquasso vs. Strawberry Fields

17 / 21

Photonic Quantum Computing

Photonic circuits as neural networks

Why simulate a photonic quantum computer?

Piquasso simulator framework

Tensorflow integration

Simulation using Tensorflow

Piquasso now supports the Tensorflow machine learning platform.

+

18 / 21

Automatic differentiation of optical circuits

config = pq.Config(cutoff=4)

simulator = pq.TensorflowPureFockSimulator(d=3)

theta_1, theta_2 = tf.Variable(1.0), tf.Variable(2.0)

xi = tf.Variable(3.0)

with pq.Program() as program:

pq.Q() | pq.Vacuum() | pq.Displacement(alpha=[0.1, 0.2, 0.3])

pq.Q(0, 1) | pq.Beamsplitter(theta=theta_1)

pq.Q(1, 2) | pq.Beamsplitter(theta=theta_2)

pq.Q() | pq.Kerr(xi=xi)

with tf.GradientTape() as tape:

probabilities = simulator.execute(program).state.fock_probabilities

tape.jacobian(probabilities, [theta_1, theta_2, xi])

[<tf.Tensor: shape=(20,), dtype=float32, numpy=array(

[0. , 0.03394834, -0.02936802, -0.00458031, 0.00062407, ...

19 / 21

Benchmarking single CVNN layers

20 / 21

Thank you for your attention!

21 / 21

	Photonic Quantum Computing
	Photonic circuits as neural networks
	Why simulate a photonic quantum computer?
	Piquasso simulator framework
	Tensorflow integration

