Minimal Path Delay Leading Zero Counters on Xilinx FPGAs

Gregory Morse [1] morse@inf.elte.hu

Tamás Kozsik [1] kto@elte.hu

Péter Rakyta [2] peter.rakyta@ttk. elte.hu
[1] Department of Programming Languages and Compilers,
[2] Department of Physics of Complex Systems, Eötvös Loránd
LZC FPGA
GPUDay'23

Project Collaboration

Q小等 National Laboratory HUNGARY

 씨대리

 씨대리}

Introduction

- Leading Zero Counters are necessary in IEEE floating point addition which is very resource-intensive over hundreds of instances
- Target Xilinx Series 7 and Ultrascale Architecture FPGAs
- Configurable Logic Block (CLB) allows efficient implementation
- Use of high-level MaxCompiler to generate efficient low-level circuits
- Generalize to any bit-size
- Prioritize high-performance, low-resources (not power)
- Reduce modularity to further minimize path delay over Zahir, et al. Efficient leading zero count (LZC) implementations for Xilinx FPGAs. IEEE Embedded Systems Letters 14(1), 35-38 (2022)
Keywords: FPGA, MaxCompiler, Leading Zero Counters, High-Level Synthesis, Vivado

Floating point addition/subtraction motivation

- Not needed when adding same-signed values or subtracting opposite-signed values as the result always can be at least half or at most double, easy to check 3-bit positions
- When effective subtraction occurs, result can have any number of leading-zeros
- Traditional clever use of floating point units (FPUs) addition/subtraction unit has been using the normalization process post-subtraction with custom byte-packing
- inserting an integer in the mantissa m and setting the exponent to $e=b-1$ where b is the mantissa size of the data type (e.g. $b=24$ for float $32, b=53$ for float64). The floating point value is $m * 2^{e}$.
- here is always an implied 2^{e} added to the stored mantissa, in the IEEE standard variants. Then by subtracting the exponent part 2^{b-1}, the exponent becomes the leading zero count.

Example Schematic of a floating point adder

Floating Point Adder Block Diagram

FPU LZC explicitly used in practice for integer $\log _{2}$

```
int v; // 32-bit integer to find the log base 2 of
int r; // result of log_2(v) goes here
union { unsigned int u[2]; double d; } t; // temp
t.u[__FLOAT_WORD_ORDER==LITTLE_ENDIAN] = 0x43300000;
t.u[__FLOAT_WORD_ORDER!=LITTLE_ENDIAN] = v;
t.d == 4503599627370496.0;
r = (t.u[__FLOAT_WORD_ORDER==LITTLE_ENDIAN] >> 20) - 0x3FF;
```

- A C implementation from Bit Twiddling Hacks: Find the integer log base 2 of an integer with an 64-bit IEEE float
- Note: exponent bias of 11 -bit exponent is $2^{10}-1=1023$
- $0 \times 433=1075=1023+52$ as the top 12 bits are sign + exponent
- $4503599627370496.0=2^{52}$ subtract the implicitly stored bit, invoking the LZC
- $0 \times 3 F F=1023$ subtracted to un-bias the exponent
- All-zero case must be explicitly checked however
- _-builtin_clz intrinsic more efficiently does this via bit-scan reverse (BSR) x86 assembly instruction

A binary logic viewpoint of LZC via recurrence relations

$$
\begin{equation*}
V=\bigwedge_{K=n}^{1} \overline{X_{k}}=\overline{X_{n}} \wedge \overline{X_{n-1}} \wedge \cdots \wedge \overline{X_{1}} \tag{1}
\end{equation*}
$$

is the all-zero signal and

$$
\begin{gather*}
z(i, j)=\left(\bigvee_{k=n-2^{i+j}}^{n-2^{i+j+1}} X_{k}\right) \vee\left(\bigwedge_{k=n-2^{i+j+1}}^{n-2^{i+j+2}} \overline{X_{k}} \wedge z(i, j+2)\right) \tag{2}\\
C=\prod_{i=0}^{\left\lceil\log _{2} n\right\rceil-1}\left(V \vee\left(\bigwedge_{k=n}^{n-2^{i}} \overline{X_{k}} \wedge z(i, 0)\right)\right) \tag{3}
\end{gather*}
$$

represents the leading zero count as a bit-string (which is built via the concatenation operator $\|$) in Boolean algebra as an infinite recurring relationship (where \vee and \wedge are logical OR and logical AND respectively). In our notation, a bar above represents a logical negation. In the special case that X contains all zeros, then V and all bits of C_{\checkmark} are set to 1 .

A look at the Xilinx CLB logic slice (SLICEL)

- memory slice (SLICEM) are a superset for shift register look-up tables (SRLs)
- 4 Look-Up Tables (LUTs) on the far left
- 8 Flip-flops of D-type with Reset and Enable (FDRE) on the right
- Between the two is the vertical column carry in/out logic

A more detailed look at LUT6-2

Figure: LUT6-2 in Xilinx Ultrascale Configurable Logic Blocks (CLBs).

$$
f_{1}\left(x_{0}, \ldots, x_{5}\right)= \begin{cases}f_{3}\left(x_{0}, \ldots, x_{4}\right) & \text { if } x_{5} \tag{4}\\ f_{2}\left(x_{0}, \ldots, x_{4}\right) & \text { otherwise }\end{cases}
$$

A LUT-6 also provides a $4: 1$ multiplexer:

$$
f\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=
$$

$\begin{cases}x_{0} & \text { if } \overline{x_{4}} \wedge \overline{x_{5}} \\ x_{1} & \text { if } \overline{x_{4}} \wedge x_{5} \\ x_{2} & \text { if } x_{4} \wedge \overline{x_{5}} \\ x_{3} & \text { otherwise }\end{cases}$

- In general, termed a LUTNM (where $N=6, M=2$)

A more detailed look at MUXF7/MUXF8

Figure: MUXF7 and MUXF8 in Xilinx CLBs when used as a 7 and 8 bit multiplexer.

- Conceptually, 2 or 4 LUT-6s to be part of an 8:1 or 16:1 multiplexer
- Ultrascale architecture also has added a MUXF9 which is not inferred in synthesis
- Explicitly specified via the MUXF_MAPPING VHDL property
- Can be converted to LUT-3s via the -muxf_remap option in the design optimization phase

High-Level Synthesis and Implementation

- Synthesis phase: map VHDL onto device logic elements while allowing constraints via Xilinx Design Constraints (XDC)
- Sub-processes from Xilinx Design Suite User Guide: Implementation
- 1. Opt Design: Optimizes the logical design to make it easier to fit onto the target Xilinx device.
- 2. Power Opt Design (optional): Optimizes design elements to reduce the power demands of the target Xilinx device.
- 3. Place Design: Places the design onto the target Xilinx device and performs fanout replication to improve timing.
- 4. Post-Place Power Opt Design (optional): Additional optimization to reduce power after placement.
- 5. Post-Place Phys Opt Design (optional): Optimizes logic and placement using estimated timing based on placement. Includes replication of high fanout drivers.
- 6. Route Design: Routes the design onto the target Xilinx device.
- 7. Post-Route Phys Opt Design (optional): Optimizes logic, placement, and routing using actual routed delays.
- 8. Write Bitstream: Generates a bitstream for Xilinx device configuration. Typically, bitstream generation follows implementation?

Controlling synthesis from MaxCompiler

- MaxCompiler Data-Flow Engine (DFE) framework provides a high-level Java description of the circuit
- Can disable/enable automatic pipeline registers via a stack of states
- Can manually pipeline a signal explicitly
- Can use custom Intellectual Property (IP) solutions at a kernel-level
- Through undocumented low-level customization, can attempt to control VHDL inference:
- VHDL KEEP directives on LUT output signals to prevent any sort of combining at synthesis time
- VHDL DONT_TOUCH attribute is similar but also applied during implementation having the unfortunate side-effect of preventing LUTNM combining during placement
- Xilinx Vivado also provides its own High-Level Synthesis (HLS) tool supporting $C++$ but is not as easy to use

Zahir, et al. Design for LZC-8

Our Design Formula for LZC-8

X6	X5	X4	X3	X2	X1	LP3	LP2	LP1	LP4
1	X	X	X	X	X	0	0	0	0
0	1	X	X	X	X	0	0	1	0
0	0	1	X	X	X	0	1	0	0
0	0	0	1	X	X	0	1	1	0
0	0	0	0	1	X	1	0	0	0
0	0	0	0	0	1	1	0	1	0
0	0	0	0	0	0	1	1	1	1

Table: Boolean Logic Mappings used by LZC-8-Intermediate results.

$$
\begin{gather*}
L P 1=\overline{X_{6}} \wedge\left(X_{5} \vee\left(\overline{X_{4}} \wedge\left(X_{3} \vee \overline{X_{2}}\right)\right)\right) \tag{6}\\
L P 2=\overline{X_{6}} \wedge \overline{X_{5}} \wedge\left(X_{4} \vee X_{3} \vee\left(\overline{X_{2}} \wedge \overline{X_{1}}\right)\right) \tag{7}\\
L P 3=\overline{X_{6}} \wedge \overline{X_{5}} \wedge \overline{X_{4}} \wedge \overline{X_{3}} \tag{8}\\
L P 4=\overline{X_{6}} \wedge \overline{X_{5}} \wedge \overline{X_{4}} \wedge \overline{X_{3}} \wedge \overline{X_{2}} \wedge \overline{X_{1}} \tag{9}
\end{gather*}
$$

Design of LZC-15/16 with LZC-8-Intermediate versus

 LZC-8-High and LZC-8-Low

Figure: Fully Parallel LZC-8-Intermediate circuit for LZC-15/16.

- Combined LUT6s are colored dark.
- LP1 $1_{L L}$ is computed by the LP1 truth table by setting $X_{6}=0$

LZC-15/16 formulae

$$
\begin{align*}
V_{H} & =\operatorname{LP} 4_{H} \wedge \overline{X_{10}} \wedge \overline{X_{9}}, \\
Z_{2_{H}} & =\operatorname{LP} 3_{H}, \\
Z_{1_{H}} & =\operatorname{LP} 2_{H}, \\
Z_{0_{H}} & =\left(\mathrm{LP} 1_{H} \wedge \overline{\mathrm{LP} 4_{H}}\right) \vee\left(\mathrm{LP} 4_{H} \wedge \overline{X_{10}}\right), \tag{10}\\
Z_{2_{L}} & =\operatorname{LP} 4_{L} \wedge \overline{X_{5}} . \\
Z_{1_{L}} & =\operatorname{LP} 2_{L} .
\end{align*}
$$

- In case the final LZC unit is less than 2, 4 or 6 bit-wide (corresponding to LZC-9 up to LZC-14), the lower part of the design returns 1,2 or 3 signals, respectively.
- $V_{L}, Z_{2_{L}}, Z_{1_{L}}, Z_{0_{L}}$ are equivalent to the high equations for LZC-9 up to LZC-14
- V_{L} and $Z_{0_{H}}, Z_{0_{L}}$ are not needed in further processing as will be described shortly.

Generalization to LZC of non-power of two sizes

- In case the final LZC unit is less than 2, 4 or 6 bit-wide (corresponding to LZC-9 up to LZC-14), the lower part of the design returns 1,2 or 3 signals, respectively.
- When $k \bmod 16<8$, we can assume when no low pair is present that:

$$
\begin{equation*}
V_{L}=Z_{2_{L}}=Z_{1_{L}}=Z_{0_{L}}=1 \tag{11}
\end{equation*}
$$

- For $8 \leq(k \bmod 16) \leq 14$, one requires a simple fallback strategy where if $\mathrm{LP} 3_{L}$ is not present, $\mathrm{LP} 2_{L}$ is used.
- If $\mathrm{LP} 2_{L}$ is not present then $\mathrm{LP} 1_{L}$ is used while both $\mathrm{LP} 1_{L}$ and $\mathrm{LP} 4_{L}$ are always present.
- When $1 \leq(k \bmod 16) \leq 7)$ the same fallback strategy is used for LP_{H} and $\mathrm{LP}_{2} H$, and X_{10} and X_{9} can be removed or set to zero if they are not present.

Modular framework to adapt 2 LZC- n to an LZC-2n, $n \geq 16$

$$
\begin{gather*}
V=V_{H} \wedge V_{L} \tag{12}\\
Z_{3}=V_{H} \tag{13}\\
Z_{n}=\left(\overline{V_{H}} \wedge Z_{n_{H}}\right) \vee\left(V_{H} \wedge Z_{n_{L}}\right), 0 \leq n \leq 2 \tag{14}
\end{gather*}
$$

- Genearalizes to Z_{n}
- 2 LZC16 to LZC32 introduces Z_{4} and modifies Z_{3}
- 2 LZC32 to LZC64 introduces Z_{5} and modifies Z_{4}, Z_{3}

For LZC-15 and LZC-16, the LUT reduction modifications require the following substitutions defining signals V and Z_{0} :

$$
\begin{gather*}
V=\mathrm{LP} 4_{H} \wedge{\mathrm{LP} 4_{L}}^{\wedge \mathrm{LP} 4_{L L}} \tag{15}\\
Z_{0}=\mathrm{LP} 4_{H} \wedge\left(\left(\mathrm{LP} 4_{L} \wedge \mathrm{LP} 1_{L L}\right) \vee\left(\overline{\mathrm{LP} 4_{L}} \wedge \mathrm{LP} 1_{L}\right)\right) \vee\left(\overline{\mathrm{LP} 4_{H}} \wedge \mathrm{LP} 1_{H}\right) \tag{16}
\end{gather*}
$$

Multiplexer usage possibility: $\left(\overline{V_{H}} \wedge Z_{0_{H}}\right) \vee\left(V_{H} \wedge Z_{0_{L}}\right)== \begin{cases}Z_{0_{L}} & \text { if } V_{H} \\ Z_{0_{H}} & \text { otherwise }\end{cases}$ (while programmers might be more familiar with $V_{H} ? Z_{0_{L}}: Z_{\theta_{H}}$).

IP solution proposal

$$
\begin{align*}
L P 4 & = \begin{cases}0 & \text { if } X_{7} \\
\overline{X_{6}} \wedge \overline{X_{5}} \wedge \overline{X_{4}} \wedge \overline{X_{3}} \wedge \overline{X_{2}} \wedge \overline{X_{1}} & \text { otherwise }\end{cases} \\
V & =\left\{\begin{array}{ll}
0 & \text { if } X_{8} \\
\angle P 4 & \text { otherwise }
\end{array},\right. \tag{17}\\
L P 1 & = \begin{cases}0 & \text { if } X_{8} \\
X_{7} \vee L P 1\left(X_{6.11}\right) & \text { otherwise }\end{cases}
\end{align*}
$$

- LP2, LP3 are computed by Eqs. (7) and (8)
- Could not infer the circuit from MaxCompiler, synthesis inferrence uses heuristics without explicit instantiations or custom VHDL attributes.
- Uses 4 LUTs, and for LP1 an additional single MUXF7, while for V, both a MUXF7 and a MUXF8
- All the signals enter and leave the slice only one time, providing minimal routing delay, beyond delay of the MUXF7 and MUXF8 units

Small-sized example

- Consider the LZC-16 of the number 2 which is " 00000000 . 00000010b".
- It is clear that $(V, C)=(0,14)$.
- Computing the LZC-8-Intermediate values shows that:
- $\mathrm{LP}_{H}, \mathrm{LP}_{H}, \mathrm{LP}_{H}, \mathrm{LP} 4_{H}, \mathrm{LP}_{L}, \mathrm{LP} 2_{L}, \mathrm{LP} 3_{L}, \mathrm{LP} 4_{L}$ will be 1
- LP1 $1_{L L}, L P 4_{L L}$ are both 0
- This implies that V, Z_{1}, Z_{2}, Z_{3} are 1 while Z_{0} is 0 .
- We can calculate C from concatenated binaries Z_{i} as:

$$
C=2^{3} Z_{3}+2^{2} Z_{2}+2^{1} Z_{1}+2^{0} Z_{0}=14, \text { as expected. }
$$

- If we used an LZC-8-High and LZC-8-Low in this example, instead of LZC-8-Intermediate, then the values turn out to be the same
- except $X_{1}, X_{2}, X_{8}, X_{9}$ along with $\mathrm{LP} 1_{H}, \mathrm{LP} 4_{H}, \mathrm{LP} 1_{L}$ are needed to compute Z_{0} since $L P 1_{L L}, L P 4_{L L}$ are not present.

Experiment Configuration

- Targetted Ultrascale+ architecture and specifically Alveo U250 FPGAs
- MaxCompiler version 2021.1 working alongside Vivado 2020.1
- Vivado implementation was based upon the versatile "Performance_ExplorePostRoutePhysOpt" strategy
- MaxCompiler provides no built-in method
- The closest built-in approach would be the combination of a leading one detector (via the simple two's complement property leading1detect $(\mathrm{x})=-\mathrm{x} \& \mathrm{x}$ where here a bitwise AND is used) and a one-hot decoder which generates an $O\left(n^{2}\right)$ VHDL algorithm, giving high area and power, and degraded performance due to presence of addition (as $-x=\sim_{x}+1$), fanout and congestion.
- Synthesis strategy optimized for performance based on Vivado's "Flow_PerfOptimized_high"

Experimentation methodology

- LZC algorithms validated with comprehensive test cases using GNU multi-precision (MP) BigNum library via mpz_sizeinbase(x, 2)
- Ultrascale+ has a 16 nm process (as opposed to Virtex 7 with a 28 nm process)
- Custom Tool Command Language (TCL) script collected the results from Vivado
- The number of Logical LUTs introduced is LUTs plus LUTNMs.
- Data gathered by compiling 2 independent identical circuits - LUTs and slices ceiling divided by 2
- Measured the power to the whole MaxCompiler kernel core in milli-Watts, the finest granularity of Vivado
- Python automated the builds searching for maximum buildable frequency

Results

LZC bitwidth	LUTs(LUTNMs /MUXF7/MUXF8)	Slices	Power (mW)	Delay (ns)	Freq. (MHz)
8 new/old [1]	$4(1)$	2	10	0.808	600
16 old [1]	$12(1)$	3	13	1.016	650
32 old [1]	$29(1)$	7	11	1.226	650
64 old [1]	$58(2)$	14	11	1.69	470
16 new	$11(3)$	3	10	0.952	500
32 new	$27(5)$	10	13	1.142	600
64 new	$67(1)$	16	15	1.429	650
$\mathbf{8}$	$5(1)$	2	13	0.772	610
16	$10(4)$	5	10	0.988	510
$\mathbf{3 2}$	$27(0)$	7	12	1.052	650
$\mathbf{6 4}$	$56(0 / 8 / 0)$	15	20	1.363	650

Table: Performance Results for various LZC sizes. "new" is synthesis without the KEEP attribute. [1] Zahir, et al.

Explanation of Results

- At very high frequencies, deeper circuits can in some cases perform better as the path delay effects two slack values for registers latching result signals:
- setup (which balances the clock skew against the path delay, clock uncertainty and setup time)
- hold (balancing path delay against clock skew, uncertainty and hold time) slacks for the registers
- For example at a clock speed of 650 MHz , the clock period is $\frac{10^{3}}{650 \mathrm{MHz}}=1.538$ nanoseconds (Vivado timing scores actually use picoseconds)
- although an upper bound on path delay to achieve a build at this frequency, needs to account for the setup and hold slack in full.
- VHDL attributes constraining synthesis can significantly change the result
- Sometimes not using attributes has smaller path delay but uses more resources as Vivado uses physical device timing details
- Our implementation scales better than prior ones and minimizes the path delay

Conclusion and Future Research

- Optimal circuit not provable due to NP-complete circuit satisfiability problem (circuit-SAT)
- LZC can benefit from understanding of underlying architecture with more complicated logic over modularity
- Towards a research methodology for designing small-scale circuits with HLS tools, understanding the ways of constraining the underlying build tool, as well as measuring and collecting data points
- Ideas applicable to more applications like counting bits set (sometimes called popcount), checking for powers of two, or rounding up to the nearest power of two, etc.

