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Introduction

Leading Zero Counters are necessary in IEEE �oating point addition
which is very resource-intensive over hundreds of instances

Target Xilinx Series 7 and Ultrascale Architecture FPGAs

Con�gurable Logic Block (CLB) allows e�cient implementation

Use of high-level MaxCompiler to generate e�cient low-level circuits

Generalize to any bit-size

Prioritize high-performance, low-resources (not power)

Reduce modularity to further minimize path delay over Zahir, et al.
E�cient leading zero count (LZC) implementations for Xilinx FPGAs.
IEEE Embedded Systems Letters 14(1), 35�38 (2022)

Keywords: FPGA, MaxCompiler, Leading Zero Counters, High-Level
Synthesis, Vivado
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Floating point addition/subtraction motivation

Not needed when adding same-signed values or subtracting
opposite-signed values as the result always can be at least half or at
most double, easy to check 3-bit positions

When e�ective subtraction occurs, result can have any number of
leading-zeros

Traditional clever use of �oating point units (FPUs)
addition/subtraction unit has been using the normalization process
post-subtraction with custom byte-packing

inserting an integer in the mantissa m and setting the exponent to
e = b − 1 where b is the mantissa size of the data type (e.g. b = 24
for float32, b = 53 for float64). The �oating point value is m ∗ 2e .
here is always an implied 2e added to the stored mantissa, in the IEEE
standard variants. Then by subtracting the exponent part 2b−1, the
exponent becomes the leading zero count.
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Example Schematic of a �oating point adder

Floating Point Adder Block Diagram
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FPU LZC explicitly used in practice for integer log2

int v; // 32-bit integer to find the log base 2 of
int r; // result of log_2(v) goes here
union { unsigned int u[2]; double d; } t; // temp

t.u[__FLOAT_WORD_ORDER == LITTLE_ENDIAN] = 0x43300000;
t.u[__FLOAT_WORD_ORDER != LITTLE_ENDIAN] = v;
t.d -= 4503599627370496.0;
r = (t.u[__FLOAT_WORD_ORDER == LITTLE_ENDIAN] >> 20) - 0x3FF;

A C implementation from Bit Twiddling Hacks: Find the integer log
base 2 of an integer with an 64-bit IEEE �oat

Note: exponent bias of 11-bit exponent is 210 − 1 = 1023

0x433 = 1075 = 1023+ 52 as the top 12 bits are sign + exponent

4503599627370496.0 = 252 subtract the implicitly stored bit, invoking
the LZC

0x3FF = 1023 subtracted to un-bias the exponent

All-zero case must be explicitly checked however

__builtin_clz intrinsic more e�ciently does this via bit-scan reverse
(BSR) x86 assembly instruction
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A binary logic viewpoint of LZC via recurrence relations

V =
1∧

K=n

Xk = Xn ∧ Xn−1 ∧ · · · ∧ X1 (1)

is the all-zero signal and

z(i , j) =

 n−2i+j+1∨
k=n−2i+j

Xk

 ∨

 n−2i+j+2∧
k=n−2i+j+1

Xk ∧ z(i , j + 2)

 (2)

C =

⌈log2 n⌉−1n

i=0

V ∨

n−2i∧
k=n

Xk ∧ z(i , 0)

 (3)

represents the leading zero count as a bit-string (which is built via the
concatenation operator ∥) in Boolean algebra as an in�nite recurring
relationship (where ∨ and ∧ are logical OR and logical AND respectively).
In our notation, a bar above represents a logical negation. In the special
case that X contains all zeros, then V and all bits of C are set to 1.
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A look at the Xilinx CLB logic slice (SLICEL)

www.xilinx.com

7 Series FPGAs CLB User Guide

UG474 (v1.8) September 27, 2016

X-Ref Target - Figure 2-4

Figure 2-4: Diagram of SLICEL
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memory slice (SLICEM)
are a superset for shift
register look-up tables
(SRLs)

4 Look-Up Tables (LUTs)
on the far left

8 Flip-�ops of D-type with
Reset and Enable (FDRE)
on the right

Between the two is the
vertical column carry
in/out logic
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A more detailed look at LUT6-2

LUT-5
x4..0 f3

LUT-5
f2

MUX

x5
f1

Figure: LUT6-2 in Xilinx Ultrascale Con�gurable
Logic Blocks (CLBs).

f1(x0, . . . , x5) =

{
f3(x0, . . . , x4) if x5

f2(x0, . . . , x4) otherwise
.

(4)

In general, termed a LUTNM (where
N=6, M=2)

A LUT-6 also provides a 4:1
multiplexer:

f (x0, x1, x2, x3, x4, x5) =
x0 if x4 ∧ x5

x1 if x4 ∧ x5

x2 if x4 ∧ x5

x3 otherwise

(5)
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A more detailed look at MUXF7/MUXF8
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LUT-6
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Figure: MUXF7 and MUXF8 in Xilinx CLBs when used as a 7 and 8 bit
multiplexer.

Conceptually, 2 or 4 LUT-6s to be part of an 8:1 or 16:1 multiplexer
Ultrascale architecture also has added a MUXF9 which is not inferred
in synthesis
Explicitly speci�ed via the MUXF_MAPPING VHDL property
Can be converted to LUT-3s via the -muxf_remap option in the
design optimization phase
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High-Level Synthesis and Implementation

Synthesis phase: map VHDL onto device logic elements while allowing
constraints via Xilinx Design Constraints (XDC)
Sub-processes from Xilinx Design Suite User Guide: Implementation

1. Opt Design: Optimizes the logical design to make it easier to �t
onto the target Xilinx device.
2. Power Opt Design (optional): Optimizes design elements to reduce
the power demands of the target Xilinx device.
3. Place Design: Places the design onto the target Xilinx device and
performs fanout replication to improve timing.
4. Post-Place Power Opt Design (optional): Additional optimization to
reduce power after placement.
5. Post-Place Phys Opt Design (optional): Optimizes logic and
placement using estimated timing based on placement. Includes
replication of high fanout drivers.
6. Route Design: Routes the design onto the target Xilinx device.
7. Post-Route Phys Opt Design (optional): Optimizes logic,
placement, and routing using actual routed delays.
8. Write Bitstream: Generates a bitstream for Xilinx device
con�guration. Typically, bitstream generation follows implementation.

Morse, Kozsik, Rakyta (ELTE) LZC FPGA GPUDay'23 11 / 25



Controlling synthesis from MaxCompiler

MaxCompiler Data-Flow Engine (DFE) framework provides a
high-level Java description of the circuit

Can disable/enable automatic pipeline registers via a stack of states

Can manually pipeline a signal explicitly

Can use custom Intellectual Property (IP) solutions at a kernel-level

Through undocumented low-level customization, can attempt to
control VHDL inference:

VHDL KEEP directives on LUT output signals to prevent any sort of
combining at synthesis time
VHDL DONT_TOUCH attribute is similar but also applied during
implementation having the unfortunate side-e�ect of preventing
LUTNM combining during placement

Xilinx Vivado also provides its own High-Level Synthesis (HLS) tool
supporting C++ but is not as easy to use
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Zahir, et al. Design for LZC-8
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Our Design Formula for LZC-8

X6 X5 X4 X3 X2 X1 LP3 LP2 LP1 LP4

1 X X X X X 0 0 0 0

0 1 X X X X 0 0 1 0

0 0 1 X X X 0 1 0 0

0 0 0 1 X X 0 1 1 0

0 0 0 0 1 X 1 0 0 0

0 0 0 0 0 1 1 0 1 0

0 0 0 0 0 0 1 1 1 1

Table: Boolean Logic Mappings used by LZC-8-Intermediate results.

LP1 = X6 ∧
(
X5 ∨

(
X4 ∧ (X3 ∨ X2)

))
(6)

LP2 = X6 ∧ X5 ∧
(
X4 ∨ X3 ∨

(
X2 ∧ X1

))
(7)

LP3 = X6 ∧ X5 ∧ X4 ∧ X3 (8)

LP4 = X6 ∧ X5 ∧ X4 ∧ X3 ∧ X2 ∧ X1 (9)
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Design of LZC-15/16 with LZC-8-Intermediate versus
LZC-8-High and LZC-8-Low

LUT-5/LUT-5

X8:6
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Figure: Fully Parallel LZC-8-Intermediate circuit for LZC-15/16.

Combined LUT6s are colored dark.

LP1LL is computed by the LP1 truth table by setting X6 = 0
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LZC-15/16 formulae

VH = LP4H ∧ X10 ∧ X9,

Z2H = LP3H ,

Z1H = LP2H ,

Z0H =
(
LP1H ∧ LP4H

)
∨
(
LP4H ∧ X10

)
,

Z2L = LP4L ∧ X5.

Z1L = LP2L.

(10)

In case the �nal LZC unit is less than 2, 4 or 6 bit-wide (corresponding
to LZC-9 up to LZC-14), the lower part of the design returns 1, 2 or 3
signals, respectively.

VL,Z2L ,Z1L ,Z0L are equivalent to the high equations for LZC-9 up to
LZC-14

VL and Z0H ,Z0L are not needed in further processing as will be
described shortly.
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Generalization to LZC of non-power of two sizes

In case the �nal LZC unit is less than 2, 4 or 6 bit-wide (corresponding
to LZC-9 up to LZC-14), the lower part of the design returns 1, 2 or 3
signals, respectively.

When k mod 16 < 8, we can assume when no low pair is present that:

VL = Z2L = Z1L = Z0L = 1 . (11)

For 8 ≤ (k mod 16) ≤ 14, one requires a simple fallback strategy
where if LP3L is not present, LP2L is used.

If LP2L is not present then LP1L is used while both LP1L and LP4L
are always present.

When 1 ≤ (k mod 16) ≤ 7) the same fallback strategy is used for
LP3H and LP2H , and X10 and X9 can be removed or set to zero if
they are not present.
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Modular framework to adapt 2 LZC-n to an LZC-2n, n ≥ 16

V = VH ∧ VL (12)

Z3 = VH (13)

Zn =
(
VH ∧ ZnH

)
∨ (VH ∧ ZnL) , 0 ≤ n ≤ 2 (14)

Genearalizes to Zn

2 LZC16 to LZC32 introduces Z4 and modi�es Z3
2 LZC32 to LZC64 introduces Z5 and modi�es Z4,Z3

For LZC-15 and LZC-16, the LUT reduction modi�cations require the following
substitutions de�ning signals V and Z0:

V = LP4H ∧ LP4L ∧ LP4LL (15)

Z0 = LP4H ∧ ((LP4L ∧ LP1LL) ∨
(
LP4L ∧ LP1L

)
) ∨

(
LP4H ∧ LP1H

)
(16)

Multiplexer usage possibility:
(
VH ∧ Z0H

)
∨ (VH ∧ Z0L) ==

{
Z0L if VH

Z0H otherwise

(while programmers might be more familiar with VH?Z0L : Z0H ).
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IP solution proposal

LP4 =

{
0 if X7

X6 ∧ X5 ∧ X4 ∧ X3 ∧ X2 ∧ X1 otherwise
,

V =

{
0 if X8

LP4 otherwise
,

LP1 =

{
0 if X8

X7 ∨ LP1(X6..1) otherwise

(17)

LP2, LP3 are computed by Eqs. (7) and (8)

Could not infer the circuit from MaxCompiler, synthesis inferrence uses
heuristics without explicit instantiations or custom VHDL attributes.

Uses 4 LUTs, and for LP1 an additional single MUXF7, while for V,
both a MUXF7 and a MUXF8

All the signals enter and leave the slice only one time, providing
minimal routing delay, beyond delay of the MUXF7 and MUXF8 units
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Small-sized example

Consider the LZC-16 of the number 2 which is �00000000 .
00000010b�.

It is clear that (V ,C ) = (0, 14).

Computing the LZC-8-Intermediate values shows that:

LP1H , LP2H , LP3H , LP4H , LP1L, LP2L, LP3L, LP4L will be 1
LP1LL, LP4LL are both 0
This implies that V ,Z1,Z2,Z3 are 1 while Z0 is 0.
We can calculate C from concatenated binaries Zi as:
C = 23Z3 + 22Z2 + 21Z1 + 20Z0 = 14, as expected.

If we used an LZC-8-High and LZC-8-Low in this example, instead of
LZC-8-Intermediate, then the values turn out to be the same

except X1,X2,X8,X9 along with LP1H , LP4H , LP1L are needed to
compute Z0 since LP1LL, LP4LL are not present.
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Experiment Con�guration

Targetted Ultrascale+ architecture and speci�cally Alveo U250

FPGAs

MaxCompiler version 2021.1 working alongside Vivado 2020.1

Vivado implementation was based upon the versatile
�Performance_ExplorePostRoutePhysOpt� strategy

MaxCompiler provides no built-in method

The closest built-in approach would be the combination of a leading
one detector (via the simple two's complement property
leading1detect(x)=-x&x where here a bitwise AND is used) and a one-hot
decoder which generates an O(n2) VHDL algorithm, giving high area
and power, and degraded performance due to presence of addition (as
-x=~x+1), fanout and congestion.

Synthesis strategy optimized for performance based on Vivado's
�Flow_PerfOptimized_high�
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Experimentation methodology

LZC algorithms validated with comprehensive test cases using GNU
multi-precision (MP) BigNum library via mpz_sizeinbase(x, 2)

Ultrascale+ has a 16nm process (as opposed to Virtex 7 with a 28nm
process)

Custom Tool Command Language (TCL) script collected the results
from Vivado

The number of Logical LUTs introduced is LUTs plus LUTNMs.

Data gathered by compiling 2 independent identical circuits - LUTs
and slices ceiling divided by 2

Measured the power to the whole MaxCompiler kernel core in
milli-Watts, the �nest granularity of Vivado

Python automated the builds searching for maximum buildable
frequency
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Results

LZC LUTs(LUTNMs Slices Power Delay (ns) Freq.
bitwidth /MUXF7/MUXF8) (mW) (MHz)

8 new/old [1] 4 (1) 2 10 0.808 600
16 old [1] 12 (1) 3 13 1.016 650
32 old [1] 29 (1) 7 11 1.226 650
64 old [1] 58 (2) 14 11 1.69 470
16 new 11 (3) 3 10 0.952 500
32 new 27 (5) 10 13 1.142 600
64 new 67 (1) 16 15 1.429 650

8 5 (1) 2 13 0.772 610
16 10 (4) 5 10 0.988 510
32 27 (0) 7 12 1.052 650
64 56 (0/8/0) 15 20 1.363 650

Table: Performance Results for various LZC sizes. �new� is synthesis without the
KEEP attribute. [1] Zahir, et al.
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Explanation of Results

At very high frequencies, deeper circuits can in some cases perform
better as the path delay e�ects two slack values for registers latching
result signals:

setup (which balances the clock skew against the path delay, clock
uncertainty and setup time)
hold (balancing path delay against clock skew, uncertainty and hold
time) slacks for the registers

For example at a clock speed of 650MHz, the clock period is
103

650MHz = 1.538 nanoseconds (Vivado timing scores actually use
picoseconds)

although an upper bound on path delay to achieve a build at this
frequency, needs to account for the setup and hold slack in full.

VHDL attributes constraining synthesis can signi�cantly change the
result
Sometimes not using attributes has smaller path delay but uses more
resources as Vivado uses physical device timing details
Our implementation scales better than prior ones and minimizes the
path delay
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Conclusion and Future Research

Optimal circuit not provable due to NP-complete circuit satis�ability
problem (circuit-SAT)
LZC can bene�t from understanding of underlying architecture with
more complicated logic over modularity
Towards a research methodology for designing small-scale circuits with
HLS tools, understanding the ways of constraining the underlying build
tool, as well as measuring and collecting data points
Ideas applicable to more applications like counting bits set (sometimes
called popcount), checking for powers of two, or rounding up to the
nearest power of two, etc.
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