

GPU accelerated parallel computing of iterated function systems in mechatronic applications

Tamás Haba, Csaba Budai

Department of Mechatronics, Optics and Mechanical Engineering Informatics
Faculty of Mechanical Engineering
Budapest University of Technology and Economics

GPU Day 2023

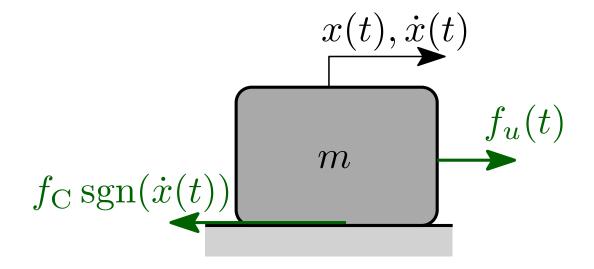
Introduction

- Main topics of the talk:
 - 1. Position control problem in mechatronics
 - 2. Analyzing the problem with Iterated Function Systems (IFS's)
 - Efficient IFS evaluation on GPU
 - 4. Results and conclusions
- Somewhat unusual approach of a practical problem involving fractals and GPU programming

Position control task

Initial problem:

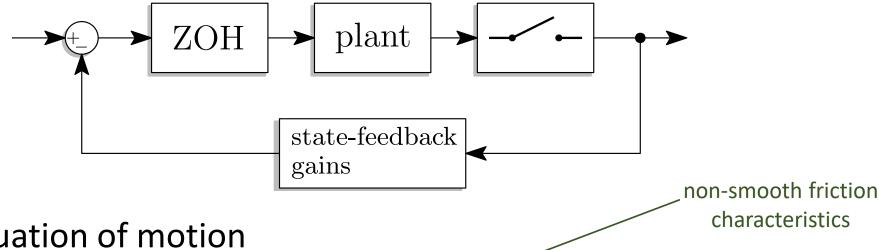
Find a control input $f_u(t)$ which drives the following one-degree-of-freedom (1DoF) system to the x(t) = 0, $\dot{x}(t) = 0$ state!



Solution: use closed-loop control

Position control with sampled-data state-feedback controller

Closed-loop control structure



Plant: equation of motion

$$m \ddot{x}(t) = f_u(t) - f_C \operatorname{sgn}(\dot{x}(t))$$

 Controller: control law with sampling and zero order hold piecewise-smooth control input $f_u(t) = -k_p x(k\tau) - k_d \dot{x}(k\tau)$

for
$$k\tau \le t < (k+1)\tau$$
 and $k = 0,1,2,...$

Dimension analysis

• Original system: 5 free parameters (m, f_C, k_p, k_d, τ) $m \ddot{x}(t) = -k_p \ x(k\tau) - k_d \dot{x}(k\tau) - f_C \ \text{sgn}\big(\dot{x}(t)\big)$ for $k\tau \le t < (k+1)\tau \ \text{and} \ k = 0,1,2,0 \dots$

• Introducing dimensionless time $T=t/\tau$

$$x''(T) = -p x_k - dv_k - \sigma \operatorname{sgn}(x'(T))$$

for $k \le T < k + 1$ and $k = 0,1,2,0 ...$

Where
$$\Box' \coloneqq \frac{\mathrm{d}}{\mathrm{d}T}\Box$$
, $\Box'' \coloneqq \frac{\mathrm{d}^2}{\mathrm{d}T^2}\Box$, $x_k = x(k)$, $v_k = x'(k)$

• Only 3 free parameters left: $p = \frac{k_p \tau^2}{m}$, $d = \frac{k_d \tau}{m}$, $\sigma = \frac{f_C \tau}{m}$

Discretized state-space model

- Assuming no motion reversal between sampling instants
- Discrete-time model

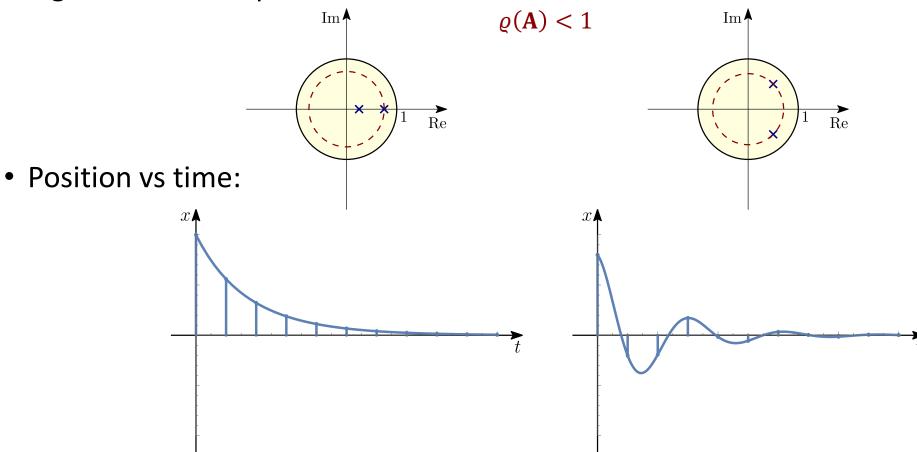
$$\begin{bmatrix} x_{k+1} \\ v_{k+1} \end{bmatrix} = \underbrace{\begin{bmatrix} 1 - \frac{p}{2} & 1 - \frac{d}{2} \\ -p & 1 - d \end{bmatrix}}_{\mathbf{A}} \begin{bmatrix} x_k \\ v_k \end{bmatrix} - \operatorname{sgn}(v_k) \underbrace{\begin{bmatrix} \frac{\sigma}{2} \\ \frac{\sigma}{2} \end{bmatrix}}_{\mathbf{A}}$$

$$\mathbf{x}_{k+1} = \begin{cases} \mathbf{A} \, \mathbf{x}_k - \mathbf{a} \\ \mathbf{A} \, \mathbf{x}_k + \mathbf{a} \end{cases} \quad \text{if} \quad \begin{aligned} v_k &> 0 \\ v_k &< 0 \end{aligned}$$

• Special case – frictionless system: $\mathbf{x}_{k+1} = \mathbf{A} \mathbf{x}_k$

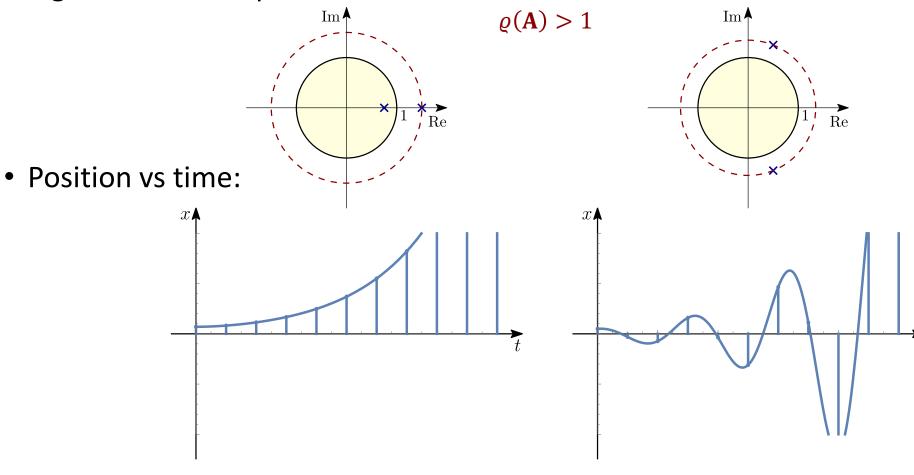
Stability of the frictionless system

• Eigenvalues and spectral radius of A:



Stability of the frictionless system

• Eigenvalues and spectral radius of A:



Iterated function systems

- A set of contraction mappings $\{f_i\}$ on a metric space
- *S* is a fixed set with the property

$$S = \bigcup_{i=1}^{N} f_i(S)$$

Or it can be expressed with the generator function

$$F(A) = \bigcup_{i=1}^{n} f_i(A)$$

as the following limit on any initial set *A*:

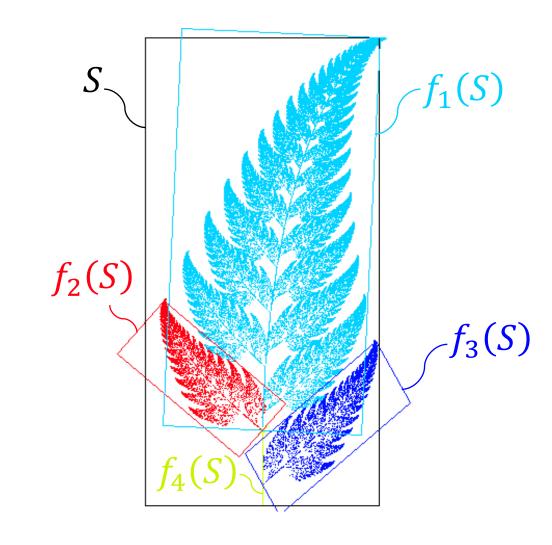
$$S = \lim_{n \to \infty} F^n(A)$$

Example: Barnsley's Fern

$$S = \bigcup_{i=1}^{N} f_i(S)$$

•
$$f_1(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 0.85 & 0.04 \\ -0.04 & 0.85 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 1.6 \end{bmatrix}$$

• $f_2(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 0.2 & -0.26 \\ 0.23 & 0.22 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 1.6 \end{bmatrix}$
• $f_3(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} -0.15 & 0.28 \\ 0.26 & 0.24 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} 0 \\ 0.44 \end{bmatrix}$
• $f_4(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 0 & 0 \\ 0 & 0.16 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$



Position control task as an IFS

• Discrete-time model describing the original system:

$$\mathbf{x}_{k+1} = \begin{cases} \mathbf{A} \ \mathbf{x}_k - \mathbf{a} \\ \mathbf{A} \ \mathbf{x}_k + \mathbf{a} \end{cases} \text{ if } \begin{aligned} v_k &> 0 \\ v_k &< 0 \end{aligned}$$

• IFS with $\{f_1, f_2\}$ where

$$f_1(\mathbf{x}) = \mathbf{A}\mathbf{x} - \mathbf{a}$$

 $f_2(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{a}$

Calculating S with generator function

Generator function of the IFS

$$F(A) = \bigcup_{i=1}^{N} f_i(A) = f_1(A) \cup f_2(A)$$

where $A = \{x\}$ is a set of $\mathbf{x} = \begin{bmatrix} x \\ v \end{bmatrix}$ state vectors

$$F \colon \{\mathbf{x}\} \mapsto \{\mathbf{A} \ \mathbf{x} - \mathbf{a} \operatorname{sgn}(v)\}$$

Goal is to calculate S

$$S = \lim_{n \to \infty} F^n(A)$$

Tamás Haba, Csaba Budai

GPU accelerated parallel computing of iterated function systems in mechatronic applications

Generator function implemented as OpenCL kernel

```
kernel void generator function(float p, float d, float sigma, global float *x, global float *v, unsigned long n){
  // check global id to prevent overindexing
  size_t gid = get_global_id(0);
  if(gid>=n)
      return;
  float x0 = x[gid];
  float v0 = v[gid];
  float A11=1-p/2, A12=1-d/2;
  float A21=-p, A22=1-d;
  float a1 = sigma/2;
  float a2 = sigma;
  x[gid] = A11*x0 + A12*v0 - a1*sign(v0);
                                                     \mathbf{x} \mapsto \mathbf{A} \mathbf{x} - \mathbf{a} \operatorname{sgn}(v)
  v[gid] = A21*x0 + A22*v0 - a2*sign(v0);
```


Simulation results

• Test parameters:

$$p = 0.430163$$

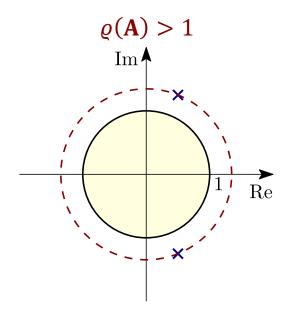
 $d = 0.00508131$
 $\sigma = 1$

Matrices of the mappings:

$$\mathbf{A} = \begin{bmatrix} 0.7849 & 0.9975 \\ -0.4302 & 0.9949 \end{bmatrix}$$

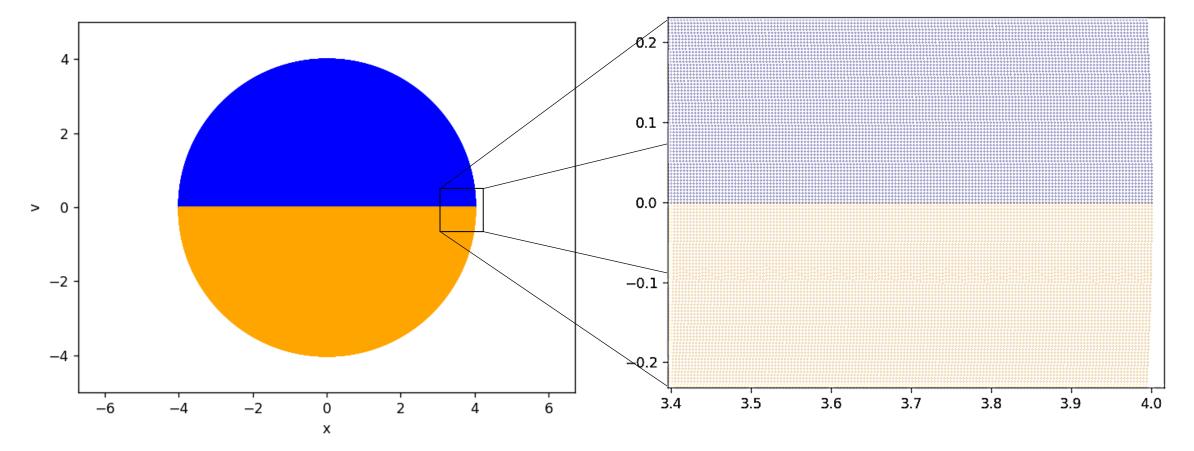
$$\mathbf{a} = \begin{bmatrix} 0.5 \\ 1 \end{bmatrix}$$

• Spectral radius $> 1 \Rightarrow$ non contractive mapping

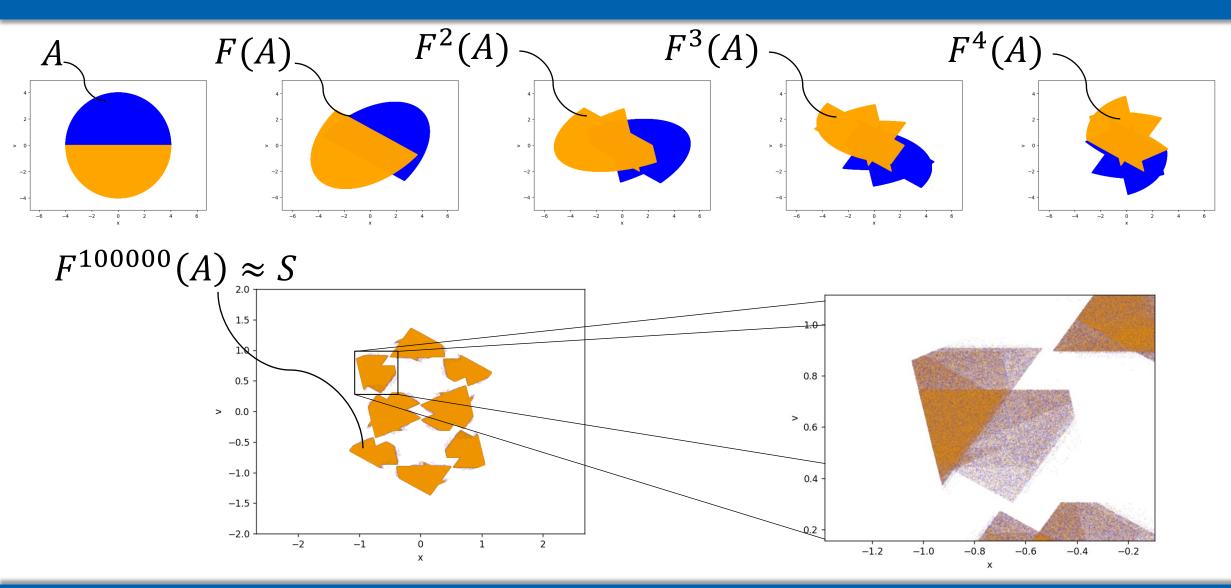


Simulation results

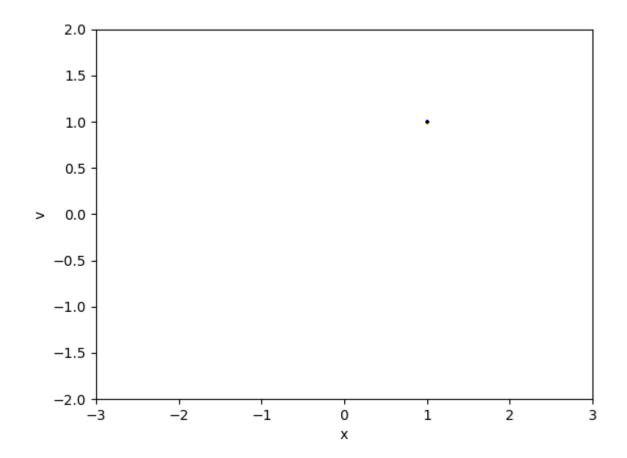
• 1573079 separate points in the state space

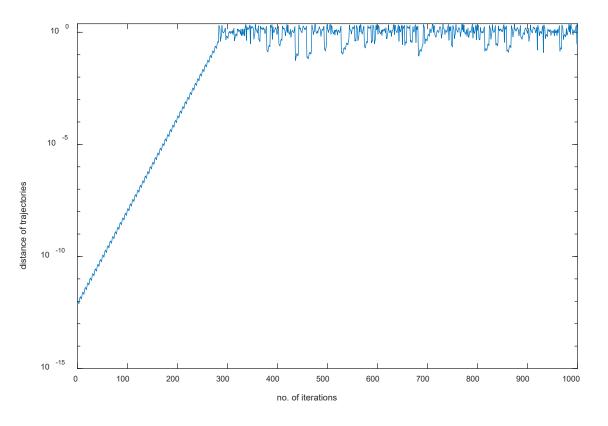


Simulation results



Separation of trajectories





Estimated domindant Lyapunov-exponent: $\lambda \approx 0.0952 > 0 \Rightarrow$ chaotic behavior

Summary

- Analysis of a position control task with dry friction
- Considering system dynamics as an iterated function systems (IFS)
- IFS evaluation on GPU
- Simulation results: chaotic behavior can occur

Thank you for your attention!

GPU accelerated parallel computing of iterated function systems in mechatronic applications

<u>Tamás Haba</u>, Csaba Budai

Supported by the **ÚNKP-22-3-1-BME-336** New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.