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Motivation: Stabilizing against cascade failures,
blackouts and increasing efficiency

Figure: 2003 North American Blackout (a) Satellite image on Northeast
United States on August 13th, 2003,at 9:29pm (EDT), 20 hours before the
2003 blackout. (b) The same as above, but 5 hours after the blackout
[Barabási and Pósfai, Network science].
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Motivation: Stabilizing against cascade failures,
blackouts and increasing efficiency
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Interconnections and Transmission System Operators

Services obtained from
several RSCs

SEleNe CC (2020)

Bal�c RSC (2016)

Nordic RSC (2016)

SCC (2015)

TSCNET (2008)

Coreso (2008)

(a) European (electric) power regions
ENTSO-E.

(b) US (electric) power regions and
flows U. S. Energy Information
Administration.
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Constructing the network, outlining the task

To be done...

▶ real network

▶ valid physical parameters

▶ weighting the links

▶ identify weak points wrt.
synchronization

▶ Find possible way(s) to
improve the network.

▶ Graph theory + engineering

▶ Crosscheck the results

Problems
▶ Detailed data is not open

source

▶ Open source data is
incomplete

▶ Correct assumptions to
complete the data set
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The grids, 2016 data

+
−

 Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

(a) EU high voltage power grids [Ódor,
Benedek, Deng, et al., “Heterogeneity
of the European grids: nodal behaviour,
edge weight, frequency analysis”].

+
−

 Leaflet (https://leafletjs.com) | Data by © OpenStreetMap (http://openstreetmap.org), under ODbL (http://www.openstreetmap.org/copyright).

(b) US high voltage power grid [Ódor,
Benedek, Deng, et al., “Heterogeneity
of the European grids: nodal behaviour,
edge weight, frequency analysis”].

▶ EU-HV: 13478 nodes with 18004 links
▶ US-HV: 14990 nodes with 18804 links
▶ Clustering, Watts-Strogatz: C = 1

N

∑
i 2 ·

ni
ki
(ki − 1)
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The grids, 2016 data

▶ CUS = 0.084 and CEU = 0.089. Both networks: much higher clustering coefficient
than that of a random graph with the same N and E Cr = ⟨k⟩/N = 0.000186229.
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(a) EU-HV power grid adjacency matrix [Ódor,

Deng, Hartmann, et al., “Synchronization

dynamics on power grids in Europe and the

United States”].
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(b) US-HV power grid adjacency matrix.
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First results: Considering topology accuracy only in
network

The underlying model: Kuramoto oscillators (swing equation)

θ̇i(t) = ωi(t)

ω̇i(t) = ωi(0)− αθ̇i(t) +K
N∑

j=1

Aij sin(θj(t)− θi(t))

Synchronization measures:
▶ Global order parameter R(tk):

z(tk) = r(tk) exp(iθ(tk)) =
N∑

j=1

exp(iθj(tk))

R(tk) = ⟨r(tk)⟩

▶ Frequency spread (variance):

Ω(t,N) =

〈
1

N

N∑
j=1

(ω − ωj)
2

〉

▶ Line-cut threshold:
Fij = |sin (θj − θi)| > T
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Using GPUs

▶ Simulation on K40 Tesla
GPU cards

▶ Leo and Komondor
Supercomputers

▶ Large interacting system:
massively parallelized

▶ Written in CUDA

▶ boost::numeric::odeint from
odeint.com

– supports various vector
backends for accelerators

▶ VexCL/OpenCL libraries

▶ Integration method:
Bulirsch-Stoer
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Hybrid synchronization transition an PL of cascade sizes

▶ investigations done by GPU
optimized simulations

▶ Cascade failures follow power
law distributions

▶ Dragon-King (DK) cascades

▶ Phase transition in Ω
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Making the grid more physical. Weights.

▶ Missing over 5000 links’
parameter

▶ Consider characteristic values
of relevant physical quantities
(engineer involved)

▶ Process the data and fill the
gaps: classify the links in
voltage levels

▶ Work on common voltage
level

▶ Weight as:

Wij =

Pij

Xij〈
P
X

〉

▶ Cross check with known data
(Hungarian power grid)

▶ Run simulations, identify
synchronization levels, weak
nodes, essential links

▶ Future: Come up with more
elaborated data acquiring
process (open question:
How?)
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Next: checking PLs, DKs, distributions and phase
transitions

▶ Checking power-law
distributions

▶ Presence of DK failures, size
of islanding effects

▶ Other bypass patterns

▶ Considering ”interacting”
networks, ie. multiple phases
are taken account; the
coupling will look like:

K · sin (∆θn.n.)

(creating simplexes between

the neighbors)

▶ Using the node properties as
well

▶ Understand whether the
frequency spread or the
global order parameter is of
more importance

▶ Analysis for the US grid

▶ Analysis and comparison with
2022 data (currently facing
problems)
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Summary

▶ Real world network
▶ Topology is not enough
▶ Data analysis and estimations

for physical parameters
▶ Weighting the network

▶ Improving the grid with
graph theory: bypasses and
community detection

▶ Stability, synchronization
improved
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Hysteresis of R
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R, Ω evolution
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R evolution
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