

Heterogeneity of the European grids Edge weight, community structure, structural improvements Kristóf Benedek Géza Ódor

Shengfeng Deng Bálint Hartmann István Papp Jeffrey Kelling

GPU Day, May 16, 2023

Group members

Kristóf Benedek¹ Géza Ódor ² Shengfeng Deng ² Bálint Hartmann³ István Papp² Jeffrey Kelling^{4, 5}

¹ Budapest University of Technology and Economics, Hungary

² Institute of Technical Physics and Materials Science, Center for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary

³ Institute of Energy Security and Environmental Safety, Center for Energy Research, P.O. Box 49, H-1525 Budapest, Hungary

 ⁴ Department of Information Services and Computing, Helmholtz-Zentrum Dresden-Rossendorf, P.O.Box 51 01 19, 01314 Dresden, Germany

⁵ Faculty of Natural Sciences, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz, Germany

Kristóf Benedek

- 1 Introduction and motivation
- 2 More motivation
- 3 First results

4 Weighting the grid5 Future6 Closing7 References

Motivation: Stabilizing against cascade failures, blackouts and increasing efficiency

Figure: 2003 North American Blackout (a) Satellite image on Northeast United States on August 13th, 2003, at 9:29pm (EDT), 20 hours before the 2003 blackout. (b) The same as above, but 5 hours after the blackout [Barabási and Pósfai, Network science].

Motivation: Stabilizing against cascade failures, blackouts and increasing efficiency

Centre for Energy Resear

Interconnections and Transmission System Operators

(a) European (electric) power regions *ENTSO-E*.

(b) US (electric) power regions and flows U. S. Energy Information Administration.

Constructing the network, outlining the task

To be done...

- ▶ **real** network
- ▶ valid physical parameters
- weighting the links
- identify weak points wrt. synchronization
- ► Find possible way(s) to improve the network.
- ► Graph theory + engineering
- Crosscheck the results

Problems

- Detailed data is not open source
- Open source data is incomplete
- Correct assumptions to complete the data set

The grids, 2016 data

(a) EU high voltage power grids [Ódor, Benedek, Deng, *et al.*, "Heterogeneity of the European grids: nodal behaviour, edge weight, frequency analysis"].

(b) US high voltage power grid [Ódor, Benedek, Deng, *et al.*, "Heterogeneity of the European grids: nodal behaviour, edge weight, frequency analysis"].

- \blacktriangleright EU-HV: 13478 nodes with 18004 links
- \blacktriangleright US-HV: 14990 nodes with 18804 links
- Clustering, Watts-Strogatz: $C = \frac{1}{N} \sum_{i} 2 \cdot \frac{n_i}{k_i} (k_i 1)$

The grids, 2016 data

• $C_{US} = 0.084$ and $C_{EU} = 0.089$. Both networks: much higher clustering coefficient than that of a random graph with the same N and E $C_r = \langle k \rangle / N = 0.000186229$.

(a) EU-HV power grid adjacency matrix [Ódor, Deng, Hartmann, et al., "Synchronization dynamics on power grids in Europe and the United States"].

First results: Considering topology accuracy only in network

The underlying model: Kuramoto oscillators (swing equation)

$$\dot{\theta}_i(t) = \omega_i(t)$$
$$\dot{\omega}_i(t) = \omega_i(0) - \alpha \dot{\theta}_i(t) + K \sum_{j=1}^N A_{ij} \sin(\theta_j(t) - \theta_i(t))$$

Synchronization measures:

• Global order parameter $R(t_k)$:

$$z(t_k) = r(t_k) \exp(i\theta(t_k)) = \sum_{j=1}^{N} \exp(i\theta_j(t_k))$$
$$R(t_k) = \langle r(t_k) \rangle$$

► Frequency spread (variance):

$$\Omega(t,N) = \left\langle \frac{1}{N} \sum_{j=1}^{N} (\overline{\omega} - \omega_j)^2 \right\rangle$$

• Line-cut threshold: $F_{ij} = |\sin(\theta_j - \theta_i)| > T$

- Simulation on K40 Tesla GPU cards
- Leo and Komondor Supercomputers
- Large interacting system: massively parallelized
- ▶ Written in CUDA

- boost::numeric::odeint from odeint.com
 - supports various vector backends for accelerators
- ► VexCL/OpenCL libraries
- Integration method: Bulirsch-Stoer

Hybrid synchronization transition an PL of cascade sizes

- investigations done by GPU optimized simulations
- Cascade failures follow power law distributions

- ► Dragon-King (DK) cascades
- ▶ Phase transition in Ω

Centre for Energy Research

Making the grid more physical. Weights.

- Missing over 5000 links' parameter
- Consider characteristic values of relevant physical quantities (engineer involved)
- Process the data and fill the gaps: classify the links in voltage levels
- Work on common voltage level
- ► Weight as:

$$W_{ij} = \frac{\frac{P_{ij}}{X_{ij}}}{\left\langle \frac{P}{X} \right\rangle}$$

- Cross check with known data (Hungarian power grid)
- Run simulations, identify synchronization levels, weak nodes, essential links
- Future: Come up with more elaborated data acquiring process (open question: How?)

Next: checking PLs, DKs, distributions and phase transitions

- Checking power-law distributions
- Presence of DK failures, size of islanding effects
- Other bypass patterns
- Considering "interacting" networks, ie. multiple phases are taken account; the coupling will look like:

 $K \cdot \sin(\Delta \theta_{n,n})$

(creating simplexes between

the neighbors)

- ▶ Using the node properties as well
- Understand whether the frequency spread or the global order parameter is of more importance
- ▶ Analysis for the US grid
- ▶ Analysis and comparison with 2022 data (currently facing problems)

- ▶ Real world network
- ► Topology is not enough
- Data analysis and estimations for physical parameters
- ► Weighting the network

- ► Improving the grid with graph theory: bypasses and community detection
- Stability, synchronization improved

Centre for Energy Research

- A.-L. Barabási and M. Pósfai, Network science. Cambridge: Cambridge University Press, 2016, ISBN: 9781107076266 1107076269. [Online]. Available: http://barabasi.com/networksciencebook/.
- [2] ENTSO-E, [Online]. Available: https://www.entsoe.eu/.
- [3] U. S. Energy Information Administration, [Online]. Available: https://www.eia.gov/ todayinenergy/detail.php?id=4270.
- G. Ódor, K. Benedek, S. Deng,
 B. Hartmann, and J. Kelling,
 "Heterogeneity of the European grids: Nodal behaviour, edge weight, frequency analysis," to be published ..., 2023.
- [5] G. Ódor, S. Deng, B. Hartmann, and J. Kelling, "Synchronization dynamics on power grids in Europe and the United States," *Phys. Rev. E*, vol. 106, p. 034 311, 3 Sep. 2022. DOI: 10.1103/PhysRevE.106.034311.

[Online]. Available: https://link.aps.org/ doi/10.1103/PhysRevE.106.034311.

- [6] G. Ódor and B. Hartmann, "Power-law distributions of dynamic cascade failures in power-grid models," *Entropy*, vol. 22, p. 666, Jun. 2020. DOI: 10.3390/e22060666.
- T. Vojta, "Rare region effects at classical, quantum and nonequilibrium phase transitions," Journal of Physics A: Mathematical and General, vol. 39, no. 22, R143-R205, May 2006. DOI: 10.1088/0305-4470/39/22/r01. [Online]. Available: https://doi.org/10.1088%2F0305-4470%2F39%2F22%2Fr01.
- [8] G. Ódor, K. Benedek, S. Deng, B. Hartmann, and J. Kelling, "Improving the European power grids: Communities, bypasses, bridges," to be published ..., 2023.
- [9] C. Cooper, GPU computing with CUDA, Boston University.

Hysteresis of R

Kristóf Benedek

References

$R, \ \Omega$ evolution

Kristóf Benedek

References

${\cal R}$ evolution

Centre for Energy Research