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Topics to be covered

1. Motivations

2. Tensor product factorization (mathematically exact, loop free)

3. Novel solutions for efficient parallelization

• Maze-Runners

• Memory management: Data Dependency Trees

• Strided Batched Matrix Multiplication for Summation

4. Benchmark results

• CPU only limit

• Hybrid CPU-multiGPU solution

• Application of symmetries

5. Power consumption → Green DMRG

6. multiNode-multiGPU solution: Towards Exascale computing



Strong correlations between electrons → exotic materials

High Tc superconductors Single molecular magnets (SMM)

Nitrogen fixation Battery technology



Experimental realizations: optical lattices

Numerical simulations: model systems

Atoms (represented as blue spheres) pictured
in a 2D-optical lattice potential

Potential depth of the optical lattice can be tuned.

Periodicity of the optical lattice can be tuned.

Hubbard model: lattice model of interacting
electron system

H = t
∑
〈i,j〉,σ

c†i,σcj,σ +
U

2

∑
σ 6=σ′

∑
i

ni,σni,σ′

t hopping amplitude
U on-site Coulomb interaction

σ ∈ ↑, ↓ spin index

Classical or quantum computers?



Simulation of quantum systems on High Performance

Comuting (HPC) infrastructure

I Numerical (classical) simulation has become an important part of
both basic and applied research.

I Enormous progress in High-Performance Computing (HPC) and the
development of numerical algorithms → simulation of physical,
chemical, biological, economical and ecological systems etc.

I For interacting quantum systems, however, a fundamental limitation
emerges: the so-called curse of dimensionality.

I Computational effort scales exponentially with the dimension of the
Hilbert space.

I There is no known universal “fix” for this problem.

I It is the interplay of quantum and classical simulation and the
delicate divide between them that is the focus of massively
parallelized tensor network state (TNS) algorithms designed for HPC
infrastructures



Tensor product approximation

State vector of a quantum system in the discrete tensor product spaces

|Ψγ〉 =

n1∑
α1=1

. . .

nd∑
αd=1

U(α1, . . . , αd , γ) |α1〉 ⊗ · · · ⊗ |αd〉 ∈
d⊗

i=1

Λi :=
d⊗

i=1

Cni ,

where span{|αi 〉 : αi = 1 , . . . , ni} = Λi = Cni and γ = 1, . . . ,m.

α1 α2 α3 α4 α5 α6 α7 α8 γ

U

• α is called ’physical’ leg

• In a spin-1/2 model αi ∈ {↓, ↑}.

• In a spin-1/2 fermionic model αi ∈ {0, ↓, ↑, ↑↓}.

dimHd = O(nd) Curse of dimensionality!

→ need efficient data-sparse representation



Matrix product state (MPS) representation

The tensor U is given element-wise as

U(α1, . . . , αd) =
r1∑

m1=1

. . .

rd−1∑
md−1=1

A1(α1,m1)A2(m1, α2,m2) · · ·Ad(md−1, αd).

We get d component tensors of order 2 or 3.
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A4

α5

A5

A tensor of order 5 in Matrix Product State (MPS) representation also
know as Tensor Train (TT). This yields a chain of matrix products:

U(α1, . . . , αd) = A1(α1)A2(α2) · · ·Ad−1(αd−1)Ad(αd)

with [Ai (αi )]mi−1,mi := Ai (mi−1, αi ,mi ) ∈ Cri−1×ri .

Controlled truncation on mi .

Redundancy:
U(α1, . . . , αd) = A1(α1)GG−1A2(α2) · · ·Ad−1(αd−1)Ad(αd)

Affleck, Kennedy, Lieb Tagasaki (87); Fannes, Nachtergale, Werner (91), White(92),
Römmer & Ostlund (94), Vidal (03); Verstraete(04); Oseledets & Tyrtyshnikov, 2009



TNS/DMRG provide state-of-the-art results in many fields

I General form of the Hamiltonian with one- and two-body interactions

H =
∑
ijαβ

Tαβ
ij c†iαcjβ +

1

2

∑
ijklαβγδ

V αβγδ
ijkl c†iαc

†
jβckγclδ + . . . ,

I i , j , k, l label modes, α, β, . . . are color indices
I Tij kinetic and on-site terms, Vijkl two-particle scattering

Vijkl =

∫
d3x1d

3x2Φ∗i (~x1)Φ∗j (~x2)
1

~x1 − ~x2
Φk(~x2)Φl(~x1)

I with appropriate choice of one-particle basis
I (DMRG): O(M3d3) +O(M2d4)
I Major aim is to obtain the desired eigenstates and measurable

quantities

• Symmetries: Abelian and non-Abelian quantum numbers, double
groups, complex integrals, quaternion sym. etc

• # of block states: 1 000 – 60 000. Size of Hilbert space up to 108.

• In ab inito DMRG the CAS size is: 70 electrons on 70 orbitals.

• 1-BRDM and 2-BRDM, finite temperature, dynamics



Efficient task processig: Maze-Runners

I In traditional producer-consumer models threads are casted into
disjoint sets labeled as producers and consumers.

I Ideally, producer and consumer threads can run in parallel

I Instead of implementing high-complexity dynamic scheduling
systems relying on task specific optimizations.

Idle Maze-Runner NO

YES

Maze available?

YES

NO

Task Found? TAKE

Found
Tasks

PUTPut Task into
Database

Solve Task

Search Maze

Life Cycle of a Maze-Runner Thread.

I Threads can be fed with
tasks from any level of
recursion.

I This ensures a magni-
tude of thread utiliza-
tion not feasable with
classical producer-
consumer based
pipelines.



Memory management: Data Dependency Trees

I Naive solution to memory management is to store all required data
in memory at all times

I Usually datasets exceed the size of allocatable memory.

I Aim: IO to be hideable behind the parallely running computation
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Buffering while Traversing
the Data Dependency Tree.

The numbers represent the
order in which the vertices
are visited.

The arrays show the buffer’s
content for each step.

I Gap-free, sequential write and read operations, no allocations and
deallocations are required in the traditional sense.



Strided Batched Matrix Multiplication for Summation

I SIMD workloads have a tendency to perform poorly when
bombarded with a high amount of small jobs.

I For aggregation of matrix multiplications, both Intel and NVIDIA
has implemented solutions: Batched GEMM.

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4

a1 a2 a3 a4b1 b2 b3 b4c1 c2 c3 c4

Sequential Vector Placement

Interleaved Vector Placement

Vectorized output of a Strided Batched
GEMM operation.

Normally, output vectors
belonging to the same ma-
trix are in a sequential order
(top).

Interleaving the vectors of
different matrices (bottom)
is possible by altering the
leading dimensions and
stride values of the output
matrices.

I We can perform batched type chained matrix multiplications without
sum reduction at the end.



Properties of the TNS/DMRG algorithms

I Key aspect of TNS/DMRG: exponential scaling can be reduced to a
polynomial form.

I Underlying tensor and matrix algebra can be organized into several
million of independent operations (tasks).

I Dense matrix operations are performed in parallel according to the
so-called quantum number decomposed representations (sectors).

I Full matrices, denoted as DMRG bond dimension, D, determines the
accuracy of the calculations.

I The overall scaling of the DMRG is D3N4 where N stands for the
system size.

I The memory requirement is proportional to D2N2.

I The iterative diagonalization of the effective Hamiltonian usually
accounting for 85% of the total execution time.

I The renormalization step is responsible for 10% of the total
execution time.



CPU only limit (for CAS(113,76) dimH = 2.88× 1036)
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(113,76), Maze-R + MKL seq.

(54,54), Maze-R + MKL seq.

(18,18), Maze-Runner + MKL seq.

(18,18), OpenMP + MKL seq.

(18,18), MKL Threaded

Performance measured in TFLOPS for the F2 and FeMoco chemical
systems for CAS(18,18) and CAS(54,54) orbitals spaces, respectively, as
a function of the DMRG bond dimension on a dual Intel(R) Xeon(R)
Gold 5318Y CPU system with 2× 24 physical cores running at 2.10 Ghz.



CPU-multiGPU
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Performance measured in TFLOPS for the F2 molecule, corresponding to
CAS(18,18) as a function of the number of GPU devices for various fixed
DMRG bond dimension values. Calculations have been performed on a
dual Intel(R) Xeon(R) Gold 5318Y CPU system with 2x24 physical cores
running at 2.1 GHz compiled with eight NVIDIA A100-PCIE-40GB GPU
units. The inset shows the scaling of the performance with respect to the
estimated theoretical maximum, Pmax as an inverse of the DMRG bond
dimension for eight GPU devices.



CPU-multiGPU: Perfomance and time vs number of GPUs

0 5

Number of GPUs

0

10

20

30

40

50

60

70

80

P
e
rf

o
rm

a
n
c
e
 i
n
 T

F
L
O

P
S

(54,54), D=3k

(54,54), D=8k

(54,54), D=10k

2 4 6 8

Number of GPUs

10
1

10
2

10
3

D
ia

g
 t
im

e
: 
C

o
m

p
u
te

+
IO

 (
m

in
u
te

s
) (18,18), D=8k

(18,18), D=24k

I Exponents: −0.8438, −0.8416 and −0.8729 (Ideal would be -1).



Speedup for selected data sets as a function of D
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The dashed line at unity could be used to determine the minimal bond
dimension for which the system dependent GPU accelerated solution
becomes faster than the CPU only limit.



Performance and related total time for the 8 GPU accelerated

diagonalization procedure: D3 → D2.3 → D1.25
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Renormalization procedure: forming q-dits with ”dits”>”bits”

I Execution time is split into two parts: The CPU-only and GPU
accelerated parts — the latter together with its respective IO
overhead

I Main bottleneck can be identified as the D2H CUDA kernels
responsible for the retrieval of computed data on the devices
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Power consumption of the TNS calculations → Green DMRG

I The power consumption of the TNS calculations are becoming one
of the most important question due to high energy demands and
costs.

I The thermal design power (TDP) for 2 × Intel(R) Xeon Gold 5318Y
CPU is 2× 165 Watts → 2.5 TFLOPS would lead to
≈ 7.5 GFLOPS/Watt.

I For an NVIDIA A100-PCIE-40GB device the TDP is 250 Watts.

I For our 8 card accelerated hybrid algorithm with 70 TFLOPS
performance results in ≈ 30.04 GFLOPS/Watt.

I For a given calculation the cost of the energy demand arising from
the processors can be reduced to one quarter of the original
consumption.

I The energy consumption of the GPU devices fluctuates significantly,
thus even a better ratio can be obtained.



Utilization of non-Abelian symmetries and more general tensor

topologies

I Using more symmetries increases the number of sectors → big
increase in the number of independent tasks

I For more general networks, the number of the independent tasks
increases tremendously.

I The optimal number of GPU devices has not been reached at eight
cards →. An MPI based multiNode-multiGPU version is expected to
further boost performance, introducing DMRG into the world of
petascale computing.



Conclusions

I Using novel algorithmic developments we could reach maximum
performance on CPU (2.5 TFLPS)

I Obtained linear scaling with number of GPUs for the hybrid
CPU-multiGPU solution

I Almost reached theo. max performance with 8 cards ( 70 TFLOPS)

I Power law scaling with exponent ' −0.87: doubling GPUs halves
execution time

I Exponent reduction: D3 → D2.3 → D1.25

I Power consumption: reduced by a fator of four or more

I Current work: multiNode-multiGPU → petascale computing
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