Iterated nth order nonlinear quantum dynamics

$$\rho = \frac{1}{\rho_{11} + \rho_{22}} \begin{bmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{bmatrix} \longrightarrow \rho' = \frac{1}{\rho_{11}^2 + \rho_{22}^2} \begin{bmatrix} \rho_{11}^2 & \rho_{12}^2 \\ \rho_{21}^2 & \rho_{22}^2 \end{bmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix}$$

 $\rho = \frac{1}{\rho_{11} + \rho_{22}} \begin{bmatrix} \rho_{11} & \rho_{12} \\ \rho_{21} & \rho_{22} \end{bmatrix} \longrightarrow \rho' = S(\rho) = HT(\rho) H^{\dagger}$

The nth order nonlinear quantum protocol

The nth order nonlinear quantum protocol

$\rho' = S\left(\rho\right) = HT\left(\rho\right)H^{\dagger}$

Bloch coordinates

$$\rho' = S(\rho) = HT(\rho) H^{\dagger}$$

$$\rho = \frac{1}{2} (I + \vec{v} \cdot \vec{\sigma}) = \frac{1}{2} \begin{bmatrix} 1 + w & u - iv \\ u + iv & 1 - w \end{bmatrix}$$

$$\rightarrow \vec{v} = [u, v, w] \text{ and } \vec{\sigma} = [\sigma_x, \sigma_y, \sigma_z]$$

$$\rho' = \frac{1}{2} \begin{bmatrix} 1 + w' & u' - iv' \\ u' + iv' & 1 - w' \end{bmatrix}$$

Bloch coordinates

second order protocol

 $\rho' = S\left(\rho\right) = HT\left(\rho\right)H^{\dagger}$

 $u' = \frac{2w}{1+w^2} \qquad v' = \frac{-2uv}{1+w^2} \qquad w' = \frac{u^2 - v^2}{1+w^2}$

Bloch coordinates

• *n*th order protocol

$$u' = \frac{(1+w)^n - (1-w)^n}{(1+w)^n + (1-w)^n}$$

$$v' = -\frac{2\text{Im}\left[(u+iv)^n\right]}{(1+w)^n + (1-w)^n}$$

$$w' = \frac{2\text{Re}\left[(u+iv)^{n}\right]}{(1+w)^{n} + (1-w)^{n}}$$

Iterated quantum protocol

Second order protocol

1.
$$\rho^{(1)} = S(\rho^0)$$

2. $\rho^{(2)} = S\left(S\left(\rho^{(0)}\right)\right)$
3. $\rho^{(3)} = S\left(S\left(S\left(\rho^{(0)}\right)\right)\right)$

$$n. \rho^{(n)} = S^{\circ n} \left(\rho^{(0)} \right)_{\text{GPU Day 2023}}$$

Difference equation for the Bloch coordinates

$$\begin{cases} u_{k+1} = \frac{(1+w_k)^n - (1-w_k)^n}{(1+w_k)^n + (1-w_k)^n} \\ v_{k+1} = -\frac{2\mathrm{Im}\left[(u_k+iv_k)^n\right]}{(1+w_k)^n + (1-w_k)^n} \\ w_{k+1} = \frac{2\mathrm{Re}\left[(u_k+iv_k)^n\right]}{(1+w_k)^n + (1-w_k)^n} \end{cases}$$

characteristics of dynamics \longrightarrow properties of the quantum protocol

Invariant sets of the dynamics

The invariant plane (u, v = 0, w)

$$u_{k+1}|_{v_k=0} = \frac{(1+w_k)^n - (1-w_k)^n}{(1+w_k)^n + (1-w_k)^n}$$

$$v_{k+1}|_{v_k=0} = -\frac{2\mathrm{Im}\left[u_k^n\right]}{\left(1+w_k\right)^n + \left(1-w_k\right)^n} = 0 \longrightarrow 2 \text{ independent variables}$$

$$w_{k+1}|_{v_k=0} = \frac{2u_k^n}{(1+w_k)^n + (1-w_k)^n}$$

Invariant sets of the dynamics

Pure states – The surface of the Bloch sphere $(u^2 + v^2 + w^2 = 1)$

 $R_{k+1}^2 = u_{k+1}^2 + v_{k+1}^2 + w_{k+1}^2$

$$=\frac{\left[\left(1+w_{k}\right)^{n}-\left(1-w_{k}\right)^{n}\right]^{2}+4\left(u_{k}^{2}+v_{k}^{2}\right)^{n}}{\left[\left(1+w_{k}\right)^{n}+\left(1-w_{k}\right)^{n}\right]^{2}}$$

$$=\frac{\left[\left(1+w_{k}\right)^{n}-\left(1-w_{k}\right)^{n}\right]^{2}+4\left(1-w_{k}^{2}\right)^{n}}{\left[\left(1+w_{k}\right)^{n}+\left(1-w_{k}\right)^{n}\right]^{2}}=1$$

Invariant sets of the dynamics

Pure states – The surface of the Bloch sphere

$$R_k^2 = 1 \Rightarrow R_{k+1}^2 = u_{k+1}^2 + v_{k+1}^2 + w_{k+1}^2 = 1$$

 $\rightarrow u^2 + v^2 + w^2 = 1 \rightarrow 2$ independent variables

$$|z|^2 = \frac{(1-w)}{(1+w)}$$
 and $\arg(z) = \arctan\left(\frac{u}{v}\right) \longrightarrow N\left(|0\rangle + z |1\rangle\right)$

Time evolution of the pure states

$$f_n\left(z\right) = \frac{1 - z^n}{1 + z^n}$$

Fixed points

Pure fixed points

$$f_n\left(z\right) = z$$

$$z^{n+1} + z^n + z - 1 = 0$$

$$\lambda = \left| \left[\frac{df_n(z)}{dz} \right]_{z_0} \right| = |f'_n(z_0)|$$

order (n)	Pure fixed points		
2	C_4	0.544	
	_	-0.772 + 1.115i	
		-0.772 - 1.115i	
3	C_4	0.618	
	C_6	-1.618	
		i	
	—	-i	
4	C_4	0.668	
	_	-1.161 + 0.676i	
	—	-1.161 - 0.676i	
	_	0.327 + 0.85i	
	—	0.327 - 0.85i	
5	C_4	0.704	
	C_6	-1.42	
	_	-0.639 + 0.938i	
	_	-0.639 - 0.938i	
	_	0.496 + 0.729i	
	_	0.496 - 0.729i	

Fixed points

Fixed points on the invariant plane

$$u = \frac{(1+w)^n - (1-w)^n}{(1+w)^n + (1-w)^n}$$

$$w = \frac{2u^{n}}{(1+w)^{n} + (1-w)^{n}}$$

order (n)	Fixe	P	
	C_3	(0.639, 0, 0.361)	0.769
2	C_4	(0.839, 0, 0.544)	1
	C_3	(0.711, 0, 0.288)	0.794
	C_4	(0.894, 0.444)	1
3	C_5	(-0.711, 0, -0.288)	0.794
	C_6	(-0.894, 0, -0.444)	1
	C_3	(0.757, 0, 0.243)	0.816
4	C_4	(0.924, 0, 0.383)	1
	C_3	(0.789, 0, 0.211)	0.834
	C_4	(0.942, 0, 0.337)	1
5	C_5	(-0.789, 0, -0.210707)	0.834
	C_6	(-0.942, 0, -0.337)	1

Limit cycles

$$(u_k, v_k, w_k) \longrightarrow C_i \xrightarrow{\text{numerical}} \text{simulations} \qquad C_0 = (0, 0, 0)$$

$$C_1 = (0, 0, 1) \leftrightarrow (1, 0, 0) \quad (0 \leftrightarrow 1)$$

$$C_2 = (0, 0, -1) \leftrightarrow (-1, 0, 0) \quad (\infty \leftrightarrow -1)$$

$$\lambda^{(1)} = |f'_n(0) f'_n(1)| = 0$$
$$\lambda^{(2)} = |f'_n(\infty) f'_n(-1)| = 0.$$

super attractive cycles

The convergence regions invariant plane

 C_0 – maximally mixed state; attractive fixed point C_1, C_2 – superattractive cycles C_3 – repelling fixed point

Julia set and Quasi-Julia set

- pure convergence regions
- Julia set: border of pure basins of attraction

Julia set and Quasi-Julia set

- pure convergence regions
- Julia set: border of pure basins of attraction
- Quasi-Julia set: all mixed points situated at the boundary of the pure attraction regions

Phase transition

- the fractal dimension of the border is constant as a function of the purity of the initial state
- below a critical purity value, the fractal disappears

Critical purity

• the point of transition between the regions depends on the degree of the nonlinearity

Thank you!

Portik, A., Kálmán, O., Jex, I., Kiss, T., 2022. Iterated nth order nonlinear quantum dynamics with mixed initial states. Physics Letters A 431, 127999. <u>https://doi.org/10.1016/j.physleta.2022.127999</u>

Wu, J., Jin, X., Mi, S., Tang, J., 2020. An effective method to compute the box-counting dimension based on the mathematical definition and intervals. Results in Engineering 6, 100106. <u>https://doi.org/10.1016/j.rineng.2020.100106</u>