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Introduction

Image of Martian frost taken by the Viking 2 Lander in 1979 
(44,57° N)

● Can Martian water ice remain in warmer temperatures?
● low thermal conductivity of the Martian surface and atmosphere

○ during the recession of the seasonal ice cap, small water ice patches might be left behind
● these might warm up substantially when direct sunlight hits them during spring

○ melting emerges as a possibility

● melting point of water ice on Mars is 273 K, while it’s stable temperature is around 200 K
○ water ice sublimates away as temperature rises
○ in theory, if the temperature rise is quick enough,

melting might occur
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Methods (Mira A. Gergácz and Ákos Keresztúri, arXiv:2212.02166)

● images taken by the HiRISE camera on board the Mars Reconnaissance Orbiter
○ 0.3 m/pixel resolution

● on the southern hemisphere 110 images analyzed out of the 1400 available ones 
that fit the selection criteria

○ 37 images with smaller ice patches on them identified
● images were analyzed manually
● separation from other bright patches were possible by their strong 

connection to the local topographic shading and colour

● using simulations with the help of The Mars Climate Database (MCD)
○ average noon temperatures

■ gives information generally on the area
■ not suitable for detecting small temperature fluctuations

○ predicted CO2 and H2O ice coverage HiRISE kamera
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Mars Reconnaissance Orbiter with the HiRISE 
camera on board (source: NASA)

https://arxiv.org/abs/2212.02166


4Typical HiRISE Images with Ice



First Results (arXiv:2212.02166)

● ice patches are distinguishable from other bright areas on HiRISE images
● remnant ice patches range between Ls=140°-200° in the latitude band between -40° and -60°
● they remain for the duration range of 19-133 Martian days

Distribution of images of ice patches that meet the criteria follow the width averaged TES 
(Thermal Emission Spectrometer) Crocus line of the retreating CO2 ice cap

● judging by the temperature simulations, 
the occurrence of liquid water on the 
macroscopic scale is highly unlikely

● however an interfacial premelting of ice 
might form

○ a few nanometer thick waterlayer
○ if it emerges it might influence low 

temperature chemical changes on 
Mars
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https://arxiv.org/abs/2212.02166


Using a Neural Network
● the problem is similar to the cat-dog case, we have two types of images that we want to distinguish between

○ images that show small icy patches
○ images that show none

● HiRISE images of these two types need to be collected and organized into two groups
○ the program will learn the difference between the two group and will be able to recognise ice patches 

on images it has not seen before

● it’ll becomes a realistic goal to analyse all available surface images
○ automatized search for ice patches
○ time efficient

● more throughout
○ a CNN might be more effective in identifying ice in black and white images
○ scans the whole image, no ice patch goes undetected
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Preparation of Data
● increasing the dataset

○ out of the 110 analyzed images 34 is used for training
○ each cut into hundreds of chunks, creating over 6000 images

■ 42% of the images have small icy patches on them
■ the rest shows none or CO2 ice sublimation on the surface

○ image size is 1024 x 1024 since the surroundings can be important
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The Deep Neural Network
● small version of a Xception network by fchollet (GitHub source)
● batch size of 30
● 25 epochs
● 0.5 dropout
● 20% of images used for validation
● Adam optimizer
● 2.7 million trainable parameters
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https://twitter.com/fchollet
https://github.com/keras-team/keras-io/blob/master/examples/vision/image_classification_from_scratch.py


Summary
● the data has been  uniformized
● dataset expanded to a sufficient size
● what’s next:

○ training the model
○ testing
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