
Heuristic optimization with
heterogeneous AI frameworks

Zsolt Kisander
PTE-MIK, Department of Automation

Timeline of “new wave” AI frameworks

Typical AI framework architecture

Out of box hardware acceleration

● Modern AI frameworks are built
on top of hardware accelerated
math libraries (MKL, CUDA, etc.)

● They provide easy to use, high
level APIs

● Drop-in replacement for popular
Python math and ML libraries

● Seamless transition between
different computing
architectures (deployment)

Autodiff and autograd

● Serves as the basis of the backpropagation
algorithm, but not restricted to neural
networks

● PyTorch module: torch.autograd
● Automatic differentiation of arbitrary scalar

valued functions (loss fn)
● Supports automatic computation of gradient

for any computational graph
● If we define a computational model with a

scalar valued performance metric, then we can
use autograd to tune the model parameters

Autodiff and autograd

Motivation - Summary

● AI frameworks provide high-level abstraction over mathematical libraries

● Uniform API across different computing architectures

● Not restricted to neural network models

● Hardware acceleration can be used to solve non-AI problems

Example - Four coloring

● No more than four colors are required to

color the regions of any map so that no two

adjacent regions have the same color

● In graph-theoretic terms, the theorem

states that for loopless planar graph, its

chromatic number is less than or equal four

Example - US states

Graph of US states

Problem formulation in PyTorch I.

Let A be the m×m adjacency matrix of a finite, loopless
planar graph. Let C be an m×n matrix, where each row
represents a vertex and each row vector is a one-hot
encoded color vector candidate. In Torch, the default
variable is the “tensor”.

Initially, fill C with i.i.d. random numbers.
Apply row-wise softmax normalization after each update
on C to ensure one-hot encoding for row vectors.

Problem formulation in PyTorch II.

1. Take the product C*CT (matmul). In the

m×m result, each element can be

interpreted as a “color similarity”

2. Mask the resulting matrix with the

adjacency matrix by calculating the

elementwise product

3. Sum all the elements to get a scalar valued

metric of coloring error (loss)

4. Minimize the error w.r.t C, using

torch.autograd

Problem formulation in PyTorch III.

“Training” loop

● In the forward step, we evaluate the model (simply
outputting the color candidates)

● In the backward step, we calculate the loss
gradients and modify the model parameters

● Repeat until an acceptable result

● Due to its heuristic nature, the algorithm does not
guarantee convergence to an optimal coloring,
therefore restart conditions should be defined

○ patience - restart if the loss fails to decrease after
some number of steps

Results I.

● Using the %%timeit magic function from
Jupyter

● Devices
○ i5-5300u CPU
○ Nvidia GTX 1050 Ti GPU
○ Google Colab Nvidia T4 GPU instance

● D-Wave Leap QPU as “baseline” using the
hybrid CQM solver and the
“graph-coloring” example
https://github.com/dwave-examples/graph
-coloring

Results II. - xPU time

i5-5300u CPU GTX 1050 Ti GPU T4 GPU
instance**

D-Wave QPU

mean 24.1 s 17.3 s 9.2 s QPU_ACCESS_TIME
0.032 s
CHARGE_TIME
5.000 s
RUN_TIME
5.214 s

std-dev 0.32 s 0.47 s 3.75 s -

Remarks

● An AI framework was successfully used to solve a non-AI problem

● The solution can be executed on a diverse set of hardwares, without any

modification in the code

● Moving the computation between CPU and GPU is a one line command;

torch_tensor.to(device) or setting the “device=” argument

Thank you for your attention!

