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Timeline of “new wave” AI frameworks



Typical AI framework architecture



Out of box hardware acceleration

● Modern AI frameworks are built 
on top of hardware accelerated 
math libraries (MKL, CUDA, etc.)

● They provide easy to use, high 
level APIs

● Drop-in replacement for popular 
Python math and ML libraries

● Seamless transition between 
different computing 
architectures (deployment)



Autodiff and autograd

● Serves as the basis of the backpropagation 
algorithm, but not restricted to neural 
networks

● PyTorch module: torch.autograd
● Automatic differentiation of arbitrary scalar 

valued functions (loss fn)
● Supports automatic computation of gradient 

for any computational graph
● If we define a computational model with a 

scalar valued performance metric, then we can 
use autograd to tune the model parameters



Autodiff and autograd



Motivation - Summary

● AI frameworks provide high-level abstraction over mathematical libraries

● Uniform API across different computing architectures

● Not restricted to neural network models

● Hardware acceleration can be used to solve non-AI problems



Example - Four coloring

● No more than four colors are required to 

color the regions of any map so that no two 

adjacent regions have the same color

● In graph-theoretic terms, the theorem 

states that for loopless planar graph, its 

chromatic number is less than or equal four



Example - US states



Graph of US states



Problem formulation in PyTorch I.

Let A be the m×m adjacency matrix of a finite, loopless 
planar graph. Let C be an m×n matrix, where each row 
represents a vertex and each row vector is a one-hot 
encoded color vector candidate. In Torch, the default 
variable is the “tensor”.

Initially, fill C with i.i.d. random numbers. 
Apply row-wise softmax normalization after each update 
on C to ensure one-hot encoding for row vectors.



Problem formulation in PyTorch II.

1. Take the product C*CT (matmul). In the 

m×m result, each element can be 

interpreted as a “color similarity”

2. Mask the resulting matrix with the 

adjacency matrix by calculating the 

elementwise product

3. Sum all the elements to get a scalar valued 

metric of coloring error (loss)

4. Minimize the error w.r.t C, using 

torch.autograd



Problem formulation in PyTorch III.



“Training” loop

● In the forward step, we evaluate the model (simply 
outputting the color candidates)

● In the backward step, we calculate the loss 
gradients and modify the model parameters

● Repeat until an acceptable result

● Due to its heuristic nature, the algorithm does not 
guarantee convergence to an optimal coloring, 
therefore restart conditions should be defined

○ patience - restart if the loss fails to decrease after 
some number of steps



Results I.

● Using the %%timeit magic function from 
Jupyter

● Devices
○ i5-5300u CPU
○ Nvidia GTX 1050 Ti GPU
○ Google Colab Nvidia T4 GPU instance

● D-Wave Leap QPU as “baseline” using the 
hybrid CQM solver and the 
“graph-coloring” example
https://github.com/dwave-examples/graph
-coloring



Results II. - xPU time

i5-5300u CPU GTX 1050 Ti GPU T4 GPU 
instance**

D-Wave QPU

mean 24.1 s 17.3 s 9.2 s QPU_ACCESS_TIME
0.032 s
CHARGE_TIME
5.000 s
RUN_TIME
5.214 s

std-dev 0.32 s 0.47 s 3.75 s -



Remarks

● An AI framework was successfully used to solve a non-AI problem

● The solution can be executed on a diverse set of hardwares, without any 

modification in the code

● Moving the computation between CPU and GPU is a one line command; 

torch_tensor.to(device) or setting the “device=” argument



Thank you for your attention!


