Heuristic optimization with
heterogeneous Al frameworks

Zsolt Kisander
PTE-MIK, Department of Automation

Timeline of “new wave” Al frameworks
o PYTHRCH

Chainer

Caffe S Caffe?
theano

P Microsoft

LA
C N TK TensorFlow

before 2012 2013 2014 2015 2016 2017

Typical Al framework architecture

J

TensorFlow/PyTorch/<FW>
Dependencies - Your code + frameWOrks +
o libraries

CPU ML libraries

J\

Al accelerator ML libraries

Hardware specific libraries
Al accelerator and hardware drivers

drivers

_—

OS Kernel
Host OS

CPU Al Accelerator

Heterogenous hardware
(CPU + Al accelerator)

Out of box hardware acceleration

Optimized Mathematical Building Blocks Library
Intel® Math Kernel Library (Intel® MKL)

e Modern Al frameworks are built
on top of hardware accelerated
math libraries (MKL, CUDA, etc.)

e They provide easy to use, high
level APIs

e Drop-inreplacement for popular
Python math and ML libraries

e Seamless transition between
different computing
architectures (deployment)

Linear Algebra

Fast Fourier Transforms

Vector Math

BLAS * Multidimensional * Trigonometric

* LAPACK + FFTW interfaces * Hyperbolic

+ ScalAPACK + Cluster FFT + Exponential

+ Sparse BLAS + Log

+ PARDISO" SMP & Cluster * Power

+ [lterative sparse solvers * Root

Vector RNG

+ Congruential

+ Wichmann-H

« Mersenne Tv

+ Sobol

* Non-determi

https://soft cuBLAS cuSPARSE cuTENSOR cuSOLVER
BF16, TF32 and BF16, TF32 and BF16, TF32 and

FP64 Tensg£1 \thcarre:ge,j\ﬂe:]igoawndl%& FP64 Tensor FP64 Tensor
Cores Cores Cores

CUTLASS CcuFFT CUDA Math API nvJPEG

BF16, TF32 and
FP64 Tensor
Cores

Increased memory BW,
Shared Memory and L2

BF16 Support Hardware
Decoder

Autodiff and autograd

i

Forward Pass

e Serves as the basis of the backpropagation
algorithm, but not restricted to neural
networks
PyTorch module: torch.autograd
Automatic differentiation of arbitrary scalar
valued functions (loss fn)

e Supports automatic computation of gradient
for any computational graph

e If we define acomputational model with a
scalar valued performance metric, then we can

JT OO

Backward Pass

AQQQ 000000

R R S
N %

use autograd to tune the model parameters

Autodiff and autograd

Parameters

1
Y= 1+ exp(—2z)
ll:%(y—t)2
f1 = wx
z=t+b
3=—z
ts = exp(ts3)
s=1+4+14
y=1/ts
=y —1t
t; =t

Motivation - Summary

Al frameworks provide high-level abstraction over mathematical libraries
Uniform API across different computing architectures

Not restricted to neural network models

Hardware acceleration can be used to solve non-Al problems

Example - Four coloring

e No more than four colors are required to
color the regions of any map so that no two
adjacent regions have the same color

e Ingraph-theoretic terms, the theorem
states that for loopless planar graph, its
chromatic number is less than or equal four

US states

Example -

OOOOOOOOOOOOOOOOOOOOOO

Cali ia Colorado C

Arizona

Graph of US states

0000000000000000000000

000000000000000000000

000000000000000000000

000000000000000000000
000000000000000000000
000000000000000000000

000000000000000000000

000000000000000000000

] -
< O m a0

Problem formulation in PyTorch .

Let A be the mxm adjacency matrix of a finite, loopless
planar graph. Let C be an mxn matrix, where each row
represents a vertex and each row vector is a one-hot
encoded color vector candidate. In Torch, the default
variable is the “tensor”.

Initially, fill C with i.i.d. random numbers.
Apply row-wise softmax normalization after each update
on C to ensure one-hot encoding for row vectors.
exp(r)
softmax(r)[=
Texp(r)

tensor([[@.0145,
.5330,
.3996,
.0380,
.4776,
.5077,
.0919,
.0605,
.1468,
.1868,
.1415,
.0386,
.1767,
.0604,
.6682,
.2157,
.7103,
.2241,
.2021,
.4137,

(SRS IS IS IS IS TS IS IS IS IS TS S IS TS S S TS S

.1547,
.1573,
.4051,
.3634,
.0215,
.1789,
.4041,
.0551,
.2879,
.0508,
.1145,
.3112,
.1166,
.0554,
.@555,
.5020,
.0238,
.1507,
.2389,
.0380,

.2028,
.1309,
.0592,
.3822,
.0645,
.0715,
. 2066,
.5995,
.5467,
.2139,
.1192,
.3116,
.2088,
.8131,
.0716,
.2151,
.0353,
.3075,
.0416,
.0844,

[SRCESESNSNSRSESESESESRSR SRS S SRS SRS R S

tensor([[@, @, 0, 1],

[e, 0, 0, 1],

[e, o, 1, 0],

[e, 1, o, 0],

[e, o, 1, 0],

[e, 1, 0, @],

[1, o, 0, 0],

[1, o, 0, 0],

[1, o, 0, @],

[e, 0, 1, @],

ol 0! 0. 0. 1)’

1361], 1.2, 9. 0],

.2164], e, 1, @, 0],

.4364], (e, o, 1, 0],

2420], [1, 0, 0, 0],

.2973], [0, 0, 1, 0],

.2849], [1, 0, 0, @],

0187], (e, o, 1, 0],

.5485], [0, 0, 0, 1],

.6248], [1, o, 0, 0],

.3386], [1, o, 0, @],

.4979], 1, o, o, o1,
.e710],
2048],
.0671],
.2306],
.3178],
:5173]

.4639]], grad_fn=<SoftmaxBackwardo>)

Problem formulation in PyTorch Il.

data

1. Take the product C*CT (matmul). In the
mxm result, each element can be
interpreted as a “color similarity”

2. Mask the resulting matrix with the
adjacency matrix by calculating the
elementwise product

3. Sumall the elements to get a scalar valued
metric of coloring error (loss)

4. Minimize the error w.r.t C, using
torch.autograd L B % Car® Cpmtoshfeg s

L(C) = TT[(CC) - A]

Problem formulation in PyTorch lll.

class Colors(nn.Module):
def _ init_ (self, initial_t=1, t_reduce_factor=0.99):
super(Colors, self).__init__ ()
self.colors = torch.randn((len(counties), nb_colors), requires_grad=True, device="cuda:@")
self.T = initial_t
self.factor = t_reduce_factor

def forward(self):
return nn.functional.softmax((1.@8/self.T)*self.colors, dim=1)

def reduce_T(self):
self.T *= self.factor

def loss_fn(co, adj):
return torch.mul(torch.matmul(co, co.T), adj).sum().sum()

“Training” loop

e Intheforward step, we evaluate the model (simply
outputting the color candidates)
° In the backward step, we calculate the loss

gradients and modify the model parameters
e Repeatuntil an acceptable result

° Due toits heuristic nature, the algorithm does not
guarantee convergence to an optimal coloring,

therefore restart conditions should be defined
o patience - restart if the loss fails to decrease after
some number of steps

zero = le-12
loss = loss_fn(cc(), adjacency)

while loss > zero:
loss = loss_fn(cc(), adjacency)
optimizer.zero_grad()
loss.backward()
optimizer.step()

Results I.

data
3

e Usingthe %%timeit magic function from
Jupyter

e Devices
o i5-5300u CPU
o NvidiaGTX 1050 Ti GPU
o Google Colab Nvidia T4 GPU instance

e D-Wave Leap QPU as “baseline” using the
hybrid CQM solver and the
“graph-coloring” example
https://github.com/dwave-examples/graph
-coloring

MEXICO _, © Carto © OpensStreetMap contributors 0

Results Il. - xPU time

i5-5300u CPU GTX 1050 Ti GPU | T4 GPU D-Wave QPU
instance**

mean 241s 17.3 s 9.2s QPU_ACCESS_TIME
0.032 s
CHARGE_TIME
5.000 s
RUN_TIME
5214 s

std-dev 0.32s 0.47 s 3.75s -

Remarks

e An Al framework was successfully used to solve a non-Al problem

e The solution can be executed on a diverse set of hardwares, without any
modification in the code

e Moving the computation between CPU and GPU is a one line command;
torch_tensor.to(device) or setting the “device=" argument

Thank you for your attention!

