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Typical Al framework architecture
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Out of box hardware acceleration

Optimized Mathematical Building Blocks Library
Intel® Math Kernel Library (Intel® MKL)

e Modern Al frameworks are built
on top of hardware accelerated
math libraries (MKL, CUDA, etc.)

e They provide easy to use, high
level APIs

e Drop-inreplacement for popular
Python math and ML libraries

e Seamless transition between
different computing
architectures (deployment)
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Autodiff and autograd

i

Forward Pass

e Serves as the basis of the backpropagation
algorithm, but not restricted to neural
networks
PyTorch module: torch.autograd
Automatic differentiation of arbitrary scalar
valued functions (loss fn)

e  Supports automatic computation of gradient
for any computational graph

e If we define acomputational model with a
scalar valued performance metric, then we can
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Backward Pass

AQQQ 000000

R R S
N %

use autograd to tune the model parameters




Autodiff and autograd

Parameters
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Motivation - Summary

Al frameworks provide high-level abstraction over mathematical libraries
Uniform API across different computing architectures

Not restricted to neural network models

Hardware acceleration can be used to solve non-Al problems



Example - Four coloring

e No more than four colors are required to
color the regions of any map so that no two
adjacent regions have the same color

e Ingraph-theoretic terms, the theorem
states that for loopless planar graph, its
chromatic number is less than or equal four
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Problem formulation in PyTorch .

Let A be the mxm adjacency matrix of a finite, loopless
planar graph. Let C be an mxn matrix, where each row
represents a vertex and each row vector is a one-hot
encoded color vector candidate. In Torch, the default
variable is the “tensor”.

Initially, fill C with i.i.d. random numbers.
Apply row-wise softmax normalization after each update
on C to ensure one-hot encoding for row vectors.
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Problem formulation in PyTorch Il.

data

1. Take the product C*CT (matmul). In the
mxm result, each element can be
interpreted as a “color similarity”

2.  Mask the resulting matrix with the
adjacency matrix by calculating the
elementwise product

3. Sumall the elements to get a scalar valued
metric of coloring error (loss)

4. Minimize the error w.r.t C, using
torch.autograd L B % Car® Cpmtoshfeg s

L(C) = TT[(CC) - A]



Problem formulation in PyTorch lll.

class Colors(nn.Module):
def _ init_ (self, initial_t=1, t_reduce_factor=0.99):
super(Colors, self).__init__ ()
self.colors = torch.randn((len(counties), nb_colors), requires_grad=True, device="cuda:@")
self.T = initial_t
self.factor = t_reduce_factor

def forward(self):
return nn.functional.softmax((1.@8/self.T)*self.colors, dim=1)

def reduce_T(self):
self.T *= self.factor

def loss_fn(co, adj):
return torch.mul(torch.matmul(co, co.T), adj).sum().sum()



“Training” loop

e Intheforward step, we evaluate the model (simply
outputting the color candidates)
° In the backward step, we calculate the loss

gradients and modify the model parameters
e  Repeatuntil an acceptable result

° Due toits heuristic nature, the algorithm does not
guarantee convergence to an optimal coloring,

therefore restart conditions should be defined
o patience - restart if the loss fails to decrease after
some number of steps

zero = le-12
loss = loss_fn(cc(), adjacency)

while loss > zero:
loss = loss_fn(cc(), adjacency)
optimizer.zero_grad()
loss.backward()
optimizer.step()



Results I.

data
3

e Usingthe %%timeit magic function from
Jupyter

e Devices
o i5-5300u CPU
o NvidiaGTX 1050 Ti GPU
o  Google Colab Nvidia T4 GPU instance

e D-Wave Leap QPU as “baseline” using the
hybrid CQM solver and the
“graph-coloring” example
https://github.com/dwave-examples/graph
-coloring
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Results Il. - xPU time

i5-5300u CPU GTX 1050 Ti GPU | T4 GPU D-Wave QPU
instance**

mean 241s 17.3 s 9.2s QPU_ACCESS_TIME
0.032 s
CHARGE_TIME
5.000 s
RUN_TIME
5214 s

std-dev 0.32s 0.47 s 3.75s -



Remarks

e An Al framework was successfully used to solve a non-Al problem

e The solution can be executed on a diverse set of hardwares, without any
modification in the code

e Moving the computation between CPU and GPU is a one line command;
torch_tensor.to(device) or setting the “device=" argument



Thank you for your attention!



