STANDARDS IN HPC

Reloaded

TABLE OF CONTENTS

OPENCL ON THE MOVE

Constantly improving

NOT L'ART POUR L'ART

IMPROVING BIT BY BIT

- <u>OpenCL SDK</u> serves as a "one-stop shop" for devs
 - Initial batch of native samples & utilities awarded to Stream
- The Khronos OpenCL Work-Group continues to improve this SDK

 - Expectation is to land improvements throughout the summer
- Quarterly spec updates
 - Clarification, bug fixes
 - New features

NEW EXTENSIONS

- <u>cl_khr_semaphore</u>
 - A new mutable, reusable sync primitive
- <u>cl_khr_external_semaphore</u>
 - Import/export semaphore sync primitives of/with other APIs
- <u>cl_khr_external_memory</u>
 - Import/export buffers and images of/with other APIs
- <u>cl_khr_command_buffer</u>
 - Record a series of commands for faster replay
 - <u>cl_khr_command_buffer_mutable_dispatch</u>
 - <u>cl_khr_command_buffer_multi_device</u>

ADVISORY PANEL

- Group of OpenCL experts from both industry and academia
- Participation is free of charge
- Members get access to
 - Working drafts of the spec
 - Internal discussion materials
 - Direct channel of communication with the WG
- Infrequent panel meetings
- If interested, reach out to the AP liaison
 - mate[[@]]streamhpc.com

CHIP-SPV

- Project of Tampere University, Argonne National Laboratory et al.
- HIP implementation running on SPIRV-enabled OpenCL runtimes
- Project available on <u>GitHub</u>

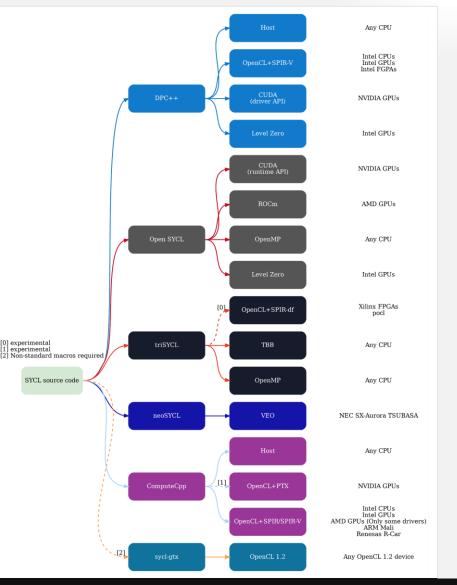
SYCL ON THE MOVE

Rapid progress

THE COOL KID IN TOWN

- <u>IWOCL 2023 conference</u> program
 - Ctrl+F, SYCL, 92-hits
 - Not 92 talks, but the vast majority
- OpenCL comes in as a distant second
- Interpretation?
 - OpenCL is far more fleshed out, needs less foundational work
 - Discrepancy not visible in cuurrent research

OpenCL	DuOnonCl	OpenCl	
	PyOpenCL	OpenCL	
Authors Re	culto		
Khronos OpenCL W			
Posts			
	celeration using FPGAs and O	penCL templates	Jan, 29
elaborate signal proce	e Array (SKA) is the world's largest radio tell essing to detect new pulsars, i.e. highly mag nding computations for this pulsar search or cess based on []	gnetised rotating neutron stars. This paper	addresses the
Implementation of	of a motion estimation algorith	Im for Intel FPGAs using Ope	nCL Jan, 29
Motion Estimation is o usually delegated to s	one of the main tasks behind any video enco specific or reconfigurable hardware, such as I, mainly using hardware description langua	oder. It is a computationally costly task; th s FPGAs. Over the years, multiple FPGA is	erefore, it is mplementations
hardware description	[]		OpenCL
Efficient OpenCL	system integration of non-blo	ocking FPGA accelerators	Jan, 22
OpenCL functions as hardware accelerators suffer from poor coord	a portability layer for diverse heterogeneou s. However, OpenCL programs utilizing mul dination between OpenCL implementations	s hardware platforms including CPUs, GP tiple of these devices in the same comput of different hardware vendors. This paper	ing platform proposes a
OpenCL functions as hardware accelerators suffer from poor coord	a portability layer for diverse heterogeneou s. However, OpenCL programs utilizing mul	s hardware platforms including CPUs, GP tiple of these devices in the same comput of different hardware vendors. This paper	Us, FPGAs, and ing platform
OpenCL functions as hardware accelerator suffer from poor coord vendor-independent o	a portability layer for diverse heterogeneou s. However, OpenCL programs utilizing mul dination between OpenCL implementations	is hardware platforms including CPUs, GP tiple of these devices in the same comput of different hardware vendors. This paper FPGA accelerators []	Us, FPGAs, and ing platform proposes a OpenCl


https://hgpu.org/?s=opencl

- Adoption of SYCL 1.2.1 was held back by the adoption of SPIR-V across the OpenCL ecosystem
- SYCL 2020 introduces
 - Non-OpenCL back-ends via generic interop system
 - Universal Shared Memory to capture host-side memory
 - Improved buffer, accessor, hosttask interfaces
 - Built-in device-side algorithms
 - Minimally C++17 conformant

UNIFIED SHARED MEMORY

Table 100. Characteristics of the different kinds of USM allocation

Allocation Type	Initial Location	Accessible By		Migratable To	
device	device	host	No	host	No
		device	Yes	device	N/A
		Another device	Optional (P2P)	Another device	No
host	host	host	Yes	host	N/A
		Any device	Yes	device	No
shared	Unspecified	host	Yes	host	Yes
		device	Yes	device	Yes
		Another device	Optional	Another device	Optional

- UVA, SVM, USM... all the same
 - Or are they?

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#sec:usm

UNIFIED SHARED MEMORY

Table 100. Characteristics of the different kinds of USM allocation

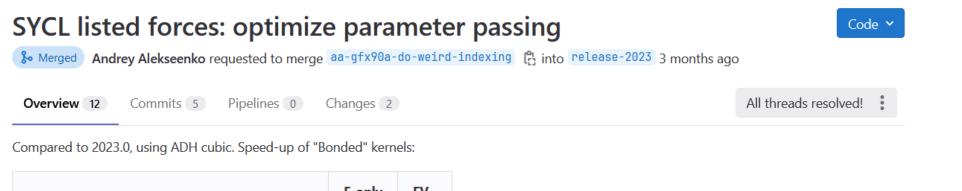
Allocation Type	Initial Location	Accessible By		Migratable To	
device	device	host	No	host	No
		eu/hipl	Malloc()	device	N/A
		Another device	Optional (P2P)	Another device	No
host	host	host Dimmod	Yes	host	N/A
		Any device	Yes memory Yes	device	No
shared		host in Mana	agedMa		Yes
	cu/i			device	Yes
			alloc()	Another device	Optional

- UVA, SVM, USM... all the same
 - Or are they?

 These allocator types unify existing features sets

https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html#sec:usm

SYCLINTERACTIONS


- GROMACS development team prefers open standards
- AMD prefers HIP back-end
 - Rule out 3rd party defects
- AMD benefits from the SYCL back-end
 - Reduce maintenance cost of HIP back-end
 - Can draw inspiration from for optimization ideas
- Stream HPC improving the HIP back-end
 - <u>Use hipSYCL macros for hip source interoperability</u>
 - Add VkFFT to hipSYCL HIP backend
 - Add CDNA II optimized float3 implementation
- GROMACS improving SYCL back-end based on HIP
 - <u>SYCL listed forces: optimize parameter passing</u>

<

SYCL INTERACTIONS

GROMACS > 🛞 GROMACS > Merge requests > !3496

	F-only	FV
hipSYCL 0.9.4, ROCm 5.2.5, bundled Clang, gfx90a	2.67	2.33
hipSYCL 0.9.4, ROCm 5.4.1, Clang 15.0.7, gfx1034	1.94	1.56
hipSYCL 0.9.4, CUDA 11.8, Clang 15.0.7, sm_86	1.00	1.00
IntelLLVM nightly 2023-02-06, CUDA 11.8, sm_86	4.09	1.55
oneAPI 2023.0, Intel Arc 770	1.29	1.01
oneAPI 2023.0, Ponte Vecchio	1.10	~1

Based on AMD/StreamHPC optimization.

Refs #3928 (closed), #4593

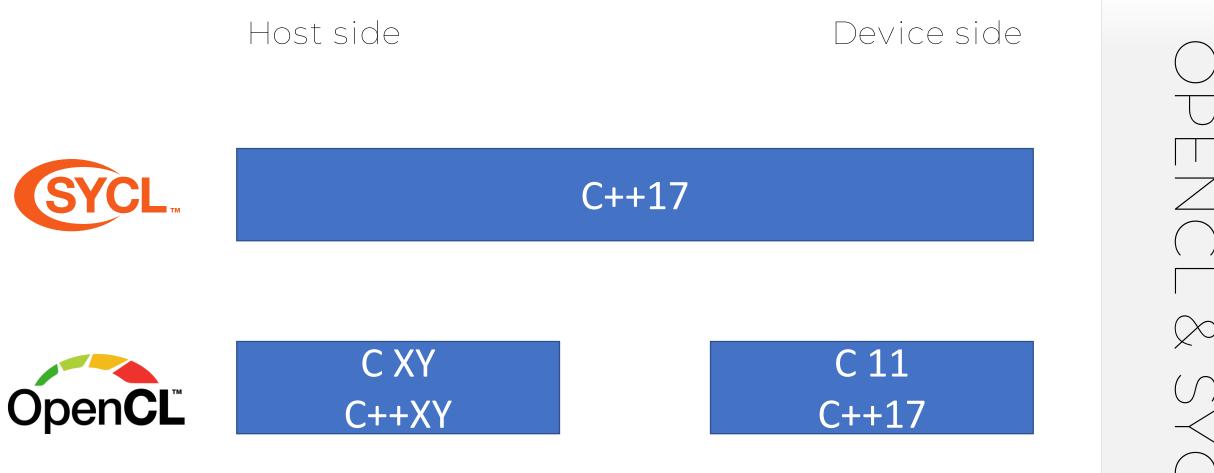
https://gitlab.com/gromacs/gromacs/-/merge_requests/3496

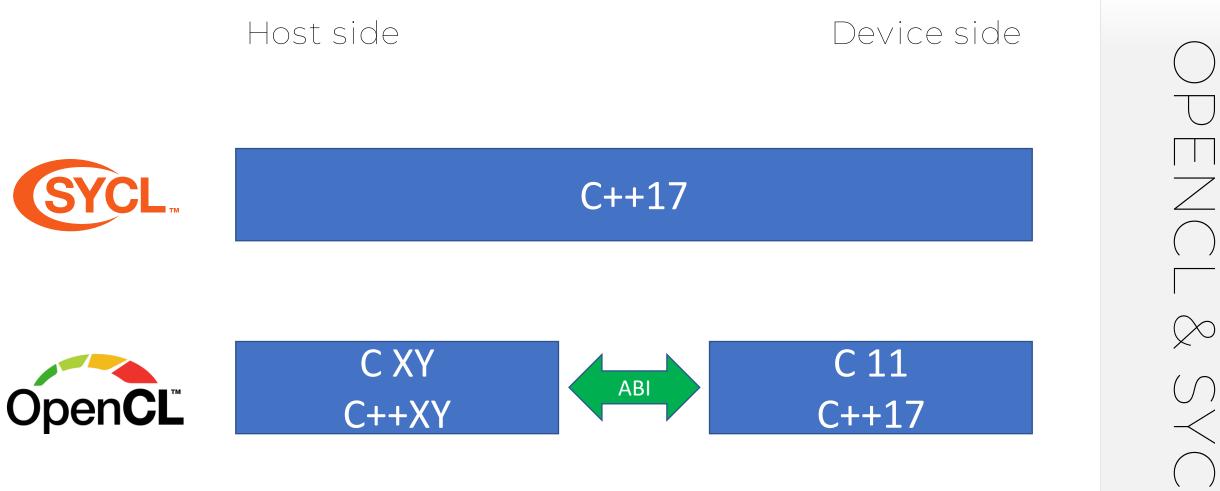
OPENCL & SYCL

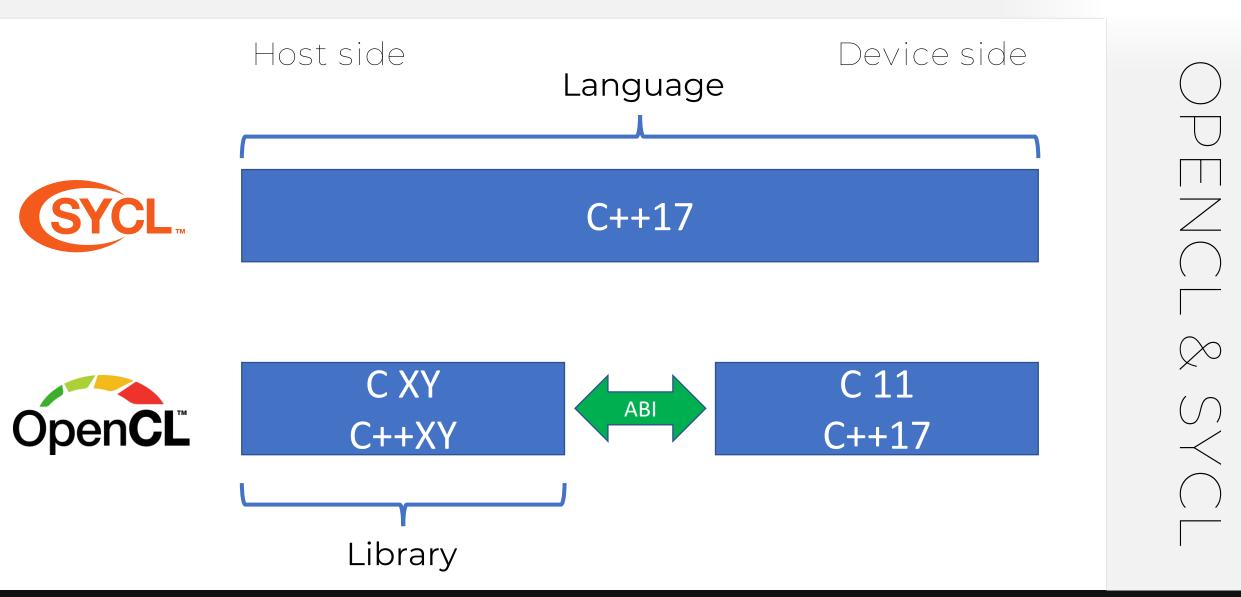
What is the fundamental difference?

Host side

Device side




 \square \bigcap \bigotimes S <



WE'RE HIRING

https://streamhpc.com/jobs/

THANKYOU FORYOUR ATTENTION