Generating small random grids with a given
number of occupied sites

Istvan Borsos

Centre for Energy Research, EK-MFA, Budapest, Hungary

GPU Day 2023
May 15-16, 2023

/25

K-subset problem

Generate random K-element subsets of a base set of N
elements with equal probability

The base set and the subsets are represented as bit vectors

25

A playful application: random positions in board games
- @& & 00

‘ o @ - ®
® 00 o
o0 & 00 ®
o0 ©
? ® ® & o
.. 'Y & .. , :.] 15x15 board, 225 sites
‘ ® 71 black pieces
® © 000 OO0 70 white pieces
oo © ¢ o0
o o0 L X
o0 o o0
®. o

This position happens to be legal in Go, Gomoku or even in
Hex (with rendering the hexagonal board on a square grid and
assuming connections also along one of the diagonals).

Traditional sequential algorithms

Variation 1 List based

» Step 1. Build a list of indices of empty sites and set the
subset empty

» Step 2. Pick an element randomly from the list, add it to
the subset and delete it from the list, advance the counter

» Step 3. Repeat Step 2 until the subset has K elements

Variation 2 Bit probe based
Step 1. Set the subset empty
Step 2. Randomly probe a bit position in the subset

Step 3. If it is set to 0 then set it to 1 and advance the
counter of the elements, otherwise reject this probe

Step 4. Repeat Step 2-3 until the subset has K elements

v

v

v

v

Weaknesses

» They are inherently slow, at least K steps are needed
» Each step consumes a random number.
» The list in Variation 1 needs a lot of memory

» Variation 2 suffers to find a new empty place by random
probing in densely populated sets and consumes a random
number for each probe including the rejected ones.

» Variation 2 executes a random number of steps which is
disadvantageous for SIMD computers

25

Single core bit-parallel algorithm
My proposal is a fast algorithm for CPU that can be easily
adapted to CUDA

>

>

We have subset Sub of S<K elements (initially empty)

We have a subset Candidates of elements that can be
selected to augment Sub. (Initially the full base set)

Step 1. [Select and Count] Select a random set of
elements from Candidates and count the number of
elements in it

Step 2. [Include] If the selected set can be added to Sub
without its new size exceeding K, then we add it to Sub
and delete the selected set from the Candidates set

Step 3. [Exclude] If the selected set is too large to be
added to S, then we reduce the Candidates set to the
selected set, that is we exclude the unselected Candidates
elements from further selection.

We repeat Step 1-3 until S=K is achieved.

Single core bit-parallel algorithm efficiency

» Because the size of the randomly choosen selected set is
on the average half of the size of the candidate set, the
candidate set is halved in Step 2 or Step 3, either because
of the inclusion or the exclusion of half of its elements.

» So on the average the procedure stops in log(N) steps

» Each step consumes one word of random bits for the
selection, so a total of log(N) words of random bits are
consumed in the whole procedure

Hardware capabilities needed

» Mostly simple AND, OR, NOT instructions are used

» The only non-basic operation is counting the ones in a
word

» However, today’s CPUs and CUDA cards and the
corresponding compilers all have fast implementation of
"population count™ for this purpose

CPU/CUDA implementation

uint32_t subset, candidates, selected_candidates; // bitsets
int nsub, nsel ;

subset=0;
candidates=~0;

nsub=0;
while (nsub != k) {
selected_candidates=curand(&localState) & candidates;
nsel= __ popc(selected_candidates);
if (nsub+nsel<=k) {
subset |= selected_candidates;
nsub += nsel;
candidates &= ~selected_candidates;}
else

candidates=selected_candidates;

Executing the code results in "subset" containing "k" ones, where Kk is
arbitrary in the range 0 to 32.

/25

Straightforward CUDA implementation

The only CUDA specific details are
» calling of the random number generator
» calling of the population count

The rest is the same for a CPU code.

It also works for 64 bit sets, with elementary changes

10/25

Divergence

In the execution time, however, there is another factor to
consider for CUDA: divergence

» Loop divergence: the algorithm executes a random number
of steps of the loop depending on the random sequence,
so some threads may take longer to finish, the slowest
thread in the warp determines the warp’s execution time

» Conditional (IF) divergence: some of the threads execute
the IF branch, the others the ELSE branch, but this cannot
happen simultaneously

11/25

CUDA speed for single word sets

Tests run on a decent mid-range GPU: RTX 3060 Ti

Generation speed: 28.5 billion subsets/second

Multithread execution speed compared to single thread
execution:

» With only one thread per warp working (thus no
divergence), execution time is measured and the speed is
scaled up to 32 threads:

» Hypothetical generation speed (as if there were no
divergence): 58.5 billion subsets/second

» Thus the multithread slowdown factor, caused mostly by
divergence, is 2.05

12/25

Scaling for other CUDA GPUs

As the program in the critical parts uses almost exclusively
registers, the speed is expected to scale according to the
raw computing speed of the various cards

13/25

From single word to larger grids

Storage: how to store the grids?

» Local (per thread) memory: slow

» Shared memory: slower than registers and limited in size
(register storage is 4 times larger)

» Registers: no regular use of arrays, as there is no
hardware indexing into the registers the array’s size and
the access pattern must be known at compile time and
accepted by the compiler, thus e.g grid size should be
known at compile time (otherwise the compiler places the
arrays in slow local memory)

All considered, register storage is the only viable solution for
fast implementation

14/25

Threadwise

Threadwise implementation guidelines:

>

>

>

Each thread executes the above algorithm
Each thread works on a different problem
Replace all sets with arrays of sets

Change all operations where sets are used to constant
step "for" loops operating on the rows of the arrays

Sum the count of elements over all rows, as the full count
of the ones in the subset array should be used for the
decisions

15/25

Threadwise CUDA code

for(int 1=0; i<sizeY;i++) {
subset [1]=0;
candidates[i]=~0;}

nsub=0;
while (nsub != k) {
nsel=0;
for(int i=0; i<sizeY;i++) {
selected_candidates[i]=curand(&localState) & candidates[i];
nsel +=__popc(selected_candidates[i]);}
if (nsub+nsel<=k) {
for(int i=0; i<sizeY;i++) {
subset [i1] |= selected_candidates[i];
candidates[i] &= ~selected_candidates[i];}
nsub += nsel;}
else
for(int i=0; i<sizeY;i++) {
candidates[i]=selected_candidates([i];}

16/25

Speed of Threadwise for 32x32 grids

Tested again on RTX 3060 Ti
Generation speed: 1.05 billion grids/second

All grids have K bits set to 1 in the whole grid.
(K arbitrary from 0 to 1024)

17/25

Storage problem
For the 32x32 case:
» We have three arrays, each needs 32 registers (of 32 bits),
thus 96 registers in all

» With the rest of the variables and CUDA overhead the
above code requires 120 registers for a grid of 32 by 32
(according to PTX).

» Threads are limited to use 255 registers in CUDA, thus it is
feasible for 32x32 grids, though not comfortable, as the
subsequent processing may need registers more than the
remaining.

» But for 64x64 grids it does not work at all, not enough
registers.

Is there a way to reduce this problem?

18/25

Warpwise implementation

» The threads in a warp work on the same problem

» Different rows of the grids are stored in different threads

» Essentially the temporally executed FOR loops in the
Threadwise implementation are executed spatially in the
threads of the warp.

As a bonus, we get rid of the divergence problems

» As there is no loop, the loop divergence does not exist
» Even in the if-else conditional only one of the branches is
executed in any warp, because the decision is based on

the add-reduction of the whole warp and the variables in

the decision have the same value in all threads. So the
threads continue to execute in lockstep.

» So no divergence problem within a warp

» In the Threadwise implementation there is divergence, but
apart from the efficiency loss, it does not cause
synchronization problems, because the threads do not
interact.

Warpwise implementation, the code

// Assume the function "warpsum" is defined earlier in the code

subset=0;
nsub=0;
candidates=~0;

while (nsub != k)
{
selected_candidates=curand (&localState) & candidates;
ntotalsel=warpsum(__popc (selected_candidates));
if (nsub+tntotalsel<=k)
{
subset |= selected_candidates;
nsub += ntotalsel;
candidates &= ~selected_candidates;
}
else
candidates=selected_candidates;

20/25

Summing warp registers
Add-Reduction is a standard procedure in CUDA

Usually through shared and global memory, but that is what we
want to avoid.

Warp shuffles help us solve this.

The function "__shfl_xor_sync", which is very efficiently
implemented in CUDA cards, is described in detail in various
CUDA programming materials on warp shuffles introduced with
Kepler and modified with Volta.

With it we can build an efficient add-reduction within the warp
that sums the same register variable in all the threads of the
warp in such a way (butterfly operation) that all the threads get
the sum, exactly what we need in our program.

21/25

Warp sum

#define sizeofwarp 32

__inline_ _ device_

int warpsum(int sum) {

#pragma unroll

for (int dist = sizeofwarp/2; dist > 0; dist /= 2)
sum += __shfl_xor_sync (0xFFFFFFFF, sum, dist);

return sum;}

Caveat!

Be sure to use a compile time constant for the size of warp.
The CUDA constant warpSize is not available for the compiler
at compile time and the compiler cannot unroll the FOR loop,
even if the pragma is there, resulting in inefficient loop code.
This slowed down our program by a factor of almost 2!

22/25

Speed of Warpwise

Tests again on the same RTX 3060 Ti

32x32 grids were generated.

Generation speed: 650 million grids /second

23/25

Comparison
For 32x32 grids:
Generation speed
» Threadwise implementation is faster (1.05 billion grids/s)

>

Warpwise somewhat slower (0.65 billion grids/s)

We see that the extra time to do the warp sum is mostly
compensated by the fact that Warpwise is free of the
divergence losses.

Register usage (including all variables and CUDA overhead):

>

>

>

Threadwise 120 registers

Warpwise 28 registers

Warpwise easily accomodates larger grids as the basic
vesion stores only one row at a time.

For larger grids: a 64x64 grid can be handled by
processing two folded rows instead of one unfolded row
and simple modification of the code. Thus each thread will
process only four 32 bit word in Warpwise.

24/25

Conclusion

Warpwise implementation is a viable option to mitigate the
register storage bottleneck while maintaining high speed
generation without using shared memory.

Thank you for your attention.

25/25

