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Motivation
In light of tremendous progress in the past decade in transition metal chemistry, photosynthesis, single
molecular magnets, and relativistic chemistry for compounds including heavy elements there is a high
demand for a generally applicable method to efficiently treat strong electronic correlations and reveal
solutions with chemical accuracy.
Although the main features of the electronic states are often characterized by the static correlations,
contributions of an intractable number of high energy excited configurations with small weights, i.e.,
dynamical effects, can be crucial for an accurate theoretical description in light of experimental data.
Quite recently, a cross-fertilization of the conventional restricted active space (RAS) scheme with the
density matrix renormalization group (DMRG) method [2, 3] has emerged as a new powerful method [1]
to capture both static and dynamic correlations.
Here, we present a new theoretical analysis and introduce a new extrapolation procedure [4], free of
empirical parameters and fully ab-initio, which reveals the ground state energy of systems with full
Hilbert space dimensions up to 2.48 × 1031 within chemical accuracy (1 kcal/mol or 0.0016 a.u.).

The N-electron Hilbert space for the the DMRG-RAS method
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Partitioning of the orbitals into ℓ CAS orbitals
and L − ℓ RAS orbitals, with N/2 ≤ ℓ ≤ L, in the
DMRG-RAS method using the blocking structure
introduced via the dynamically extended active
space (DEAS) procedure. Filled circles stand for
orbitals with four dimensional local Hilbert
space, while orbital space built from dashed
orbitals is restricted to an excitation threshold
k ≤ N. Arrows indicate the DMRG sweeping
procedure and the vertical line shows the turning
point of the forward sweep as the RAS orbitals
are treated as a single site.

The N-electron Hilbert space for the
DMRG-RAS method is then given by

H(ℓ, k) = HCAS(ℓ)
⊕
HRAS(L − ℓ, k)

where the CAS Hilbert space is the full
N-electron Hilbert space of the CAS orbitals,

HCAS(ℓ) =
N∧
i=1

span{i1 ↑, i1 ↓, ..., iℓ ↑, iℓ ↓},

and the RAS Hilbert space is spanned by all
Slater determinants which are at least singly and
at most k-fold excited with respect to some CAS
Slater determinant,
HRAS(L − ℓ, k) = a†a1f1aj1f′1HCAS

⊕
...⊕

a†a1f1...a
†
akfkaj1f′1...ajkf′kHCAS.

Thus the method has two parameters, ℓ (number
of CAS orbitals) and k (RAS excitation
threshold). While there is considerable freedom
in choosing ℓ, the standard choice for k (and the
one investigated in this paper) is k = 2.

Optimization task to obtain the ground state

obtained from the Rayleigh-Ritz principle,
E0(ℓ, k) = min

Ψ∈H (ℓ,k) : 〈Ψ,Ψ〉=1
〈Ψ, HΨ〉, (1)

where H is the (non-relativistic,
Born-Oppenheimer) electronic Hamiltonian of
the system

H =
∑
ijf

tijfa
†
ifajf +

1
2

∑
ijklff′

Vijkla
†
ifa
†
jf′akf′alf,

where tij denotes the matrix elements of the
one-particle Hamiltonian, which is comprised of
the kinetic energy and the external electric
potential of the nuclei, and Vijkl stands for stands
for the matrix elements of the electron repulsion
operator.

Partitioning of the full Hamiltonian into a
reference Hamiltonian associated with the CAS
energy and a remainder. We propose the
following choice:

H = H0 + H′ with (2)
H0 = PHP + (E0 + Δ)Q (3)
H′ = H − PHP − (E0 + Δ)Q (4)

where P is the projector ofH onto the CAS
Hilbert spaceHCAS(ℓ), Q = I − P is the projector
onto its orthogonal complementHRAS(L − ℓ,N)
within the full N-electron Hilbert spaceH(ℓ,N),
E0 is the CAS ground state energy, i.e.

E0 = E0
CAS(ℓ), (5)

and Δ > 0 is a parameter to be chosen later.
H − PHP = QHP︸︷︷︸

HCAS→RAS

+ PHQ︸︷︷︸
HRAS→CAS

+ QHQ︸︷︷︸
HRAS→RAS

Error scaling for interacting systems via dressed CAS ground state
By this we mean the normalized projection of the full FCI ground state ΨFCI onto the CAS,

Ψ̃0 =
PΨFCI

| |PΨFCI | |
. (6)

This state gives rise to the dressed CAS ground state energy
Ẽ0 = 〈Ψ̃0 |H0 |Ψ̃0〉

and dressed perturbation contributions leads to:

YRAS(ℓ) =O
(
Ẽ (3) + ||H′Ψ̃0 | |4 + ||H′Ψ̃0 | |2(Ẽ0 − E0)

)
as H′Ψ̃0→ 0. (7)
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New extrapolation method
Suppose we have numerically calculated the CAS energy E0

CAS(ℓ) and the DMRG-RAS energy E0(ℓ, 2)
for a few values of ℓ.
The scaling law now gives some information about the (unknown) FCI energy, namely

E0(ℓ, 2) − EFCI ≈ a
(
E0
CAS(ℓ) − EFCI)p for some p > 1. (8)

For careful numerical validation of this scaling law in real systems, with exponents p differing from
system to system as expected from theory, see the next section.
This is achieved by minimizing the mean squared regression error of RAS versus CAS error in a log log
plot,

MSE = 1
n

∑
ℓ

(
yℓ − (p · xℓ + log a)

)2
(9)

The predicted FCI energy is then
ERAS−X = arg min

EFCI
MSE.

Demonstration of the new extrapolation method

0.15 0.2 0.25 0.3

10
-3

10
-2

5

8

11

14

17

(b)

p=3.3104

a=0.56509

C
2

0.15 0.2 0.25 0.3

10
-2

8

11

14

(a)

p=3.6133

a=0.61661

N
2

Figure: Y(ℓ)RAS as a function of Y(ℓ)CAS shown on a double
logarithmic scale for the (a) for the N2 molecule at
d = 2.118a0 in the cc-pVDZ basis corresponding to
CAS(14,28). (b) Similar to (a) but for the C2 molecule at
d = 1.25 in the frozen core cc-pVTZ basis basis
corresponding to CAS(8,58).

d = 2.118a0 d = 2.700a0 d = 3.600a0
ECCSD -109.26762 -109.13166 -108.92531
ECCSDT -109.28032 -109.15675 -109.01408
ECCDTQ -109.28194 -109.16224 -108.99752
ERAS−X -109.2814 -109.1634 -108.9980
pRAS−X 3.98 3.45 3.23
YRAS−X 0.0007 0.0002 0.0001
pfit 3.61 3.34 3.20
EDMRG -109.282165 -109.16359 -108.99807
Table: Full-CI ground state energies obtained by large-scale
DMRG calculations with Mmin = 1024, Mmax = 10000 and
j = 10−6, together with CC reference energies taken from
Ref. [5] and predicted values ERAS−X , pRAS−X and YRAS−X
via the DMRG-RAS-X method using ℓ = 8 . . . 16 for
various bond lengths for the N2 dimer in the cc-pVDZ
basis. The pfit values correspond to direct fits of YRAS vs
YCAS as shown in Fig. 1 using the full-CI reference energies.

Numerical results for strongly correlated diatoms
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Figure: Similar to Fig. 1, but for the chromium dimer at its
equilibrium geometry, d = 1.6788 in a natural orbital basis
obtained from the cc-pVDZ atomic basis, corresponding to
a full orbital space CAS(12,68). Here, first the
extrapolation has been performed to obtain the predicted
exponent pRAS−X and energy value ERAS−X as shown in
panel (a) and (b), and the predicted energy was used to get
the curve presented in panel (c).
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Figure: Similar to Fig. 2, but for the significantly larger
cc-pVQZ basis set with frozen cores for d = 1.25,
corresponding to CAS(8,108). In the extrapolation
procedure we have used ℓ = 4 . . . 14.

Results for a large chemical complex: FeMoco
Non-extrapolated ground state energy values
obtained by DMRG and FCIQMC methods
presented in Refs. [6, 7], as well as our results,
are summarized in Tab. 2.

Method Ground state energy
i-FCIQMC-RDME -13482.1746
i-FCIQMC-PT2 -13482.1785
sHCI-VAR -13482.1604
sHCI-PT2 -13482.1734
DMRG -13482.1768
DMRG(D=8192) -13482.1718
DMRG(D=10240,NO) -13482.1754
RAS(23) -13482.1421
RAS(23,NO) -13482.1544

Table: Top: Non-extrapolated ground state energies
obtained by various methods [6, 7] for the FeMoco orbital
space introduced in Ref. [8]. Bottom: our results, including
data for natural orbitals as well.
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Figure: (a) Result of the DMRG-RAS-X extrapolation as
function of ℓ for the FeMoco for the model space taken
from Ref. [8] corresponding to CAS(54,54). (b) The same
but for the natural orbital basis. The predicted exponents
pRAS−X , the constants aRAS−X and the energy values ERAS−X
are also presented.
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