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Group Introduction

Our research group conduct research in the interface of Machine Learning, Neuroscience and Cognitive
Science
Models of high-level computation aim at understanding the representation that humans use to learn about
their environment.
We also investigate how low-level computation happens in the visual area of the brain

Modelling top-down interactions in biological vision

We use deep generative models to model top-down interactions in the primate early visual system
We compare properties of a hierarchical Variational Autoencoder to neurophysiological measurements in
the V1 and V2 brain areas
Publication: Ferenc Csikor, Balázs Meszéna, Bence Szabó, Gergő Orbán, ”Top-down effects in an early
visual cortex inspired hierarchical Variational Autoencoder”, SVRHM 2022 Workshop@ NeurIPS

Transfer Learning in Humans

The iHMM model provides a flexible model class to infer latent variable models [33]. Simi-
lar to the classical Hidden Markov Model, learning entails the specification of transition prob-
abilities between latent states along with the probability distributions of observations given a
particular latent state (Fig 2A). Additional flexibility of iHMM is provided by not fixing the
number of latent states but inferring this from data. This is implemented as a non-parametric
Bayesian model (for a brief introduction into iHMM see S1 Appendix). In an iHMM, partici-
pants filter the information gained from the observations over time to estimate the possible
latent state of the system (Fig 2Ba, filled purple circles). That is, they infer what history of events

Fig 1. Experimental paradigm and Cognitive Tomography (CT). A Top: Behavioural responses: participants are
responding with key presses on a keyboard where stimulus identities (shown as different coloured squares) are
associated with unique keys. Middle: An example deterministic pattern sequence, which recurrently occurs in the
stimulus sequence of a particular participant. Different participants are presented with permutations of this four-
element sequence. Bottom: In the actual stimulus sequence presented to participants, the deterministic pattern
sequence is interleaved with random items (small squares. Random items can be any of the four stimuli and can occur
with equal probability (size of the square is proportional to the probability of a stimulus). Grey line indicates one
particular realization of the stochastic sequence. B The probabilistic generative model underlying Cognitive
tomography. The generative model describes the process how a stimulus sequence (top grey box) results in a
behavioural response. A participant is assumed to use the internal model top blue box to make a prediction for the
upcoming stimulus. The internal model assumes dynamics over the latent states. The current latent state is determined
jointly by earlier states and the current observation. Based on the current latent state a prediction can be made on the
probability of possible upcoming stimuli. The predicted probability (size of squares corresponds to the probability of
prediction) is related to the behaviour through a behavioral model (bottom blue box). The behavioral model depends
on the task being performed and therefore the type of response being predicted. Here, the logarithm of the predictive
probability is mapped to a mean response time and actual response times are assumed to be noisy versions of this
mean. Response times (bottom grey box) shown here are 400 trials from an example participant. Cognitive tomography
uses the stimulus sequence and the sequence of behavioural responses (grey boxes) to infer the components of CT, the
internal model and the behavioral model (blue boxes).

https://doi.org/10.1371/journal.pcbi.1010182.g001
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could best explain the sequence of their stochastic observations. Then, they use their dynamical
model to play the latent state forward (Fig 2Ba, open purple circles) and predict the next stimu-
lus (Fig 2Bb).

During the eight days of exposure to the ASRT task participants undergo learning, which
leads to a substantial reorganization of the internal model. Learning can be present on short
(within day) or longer time scales. In our analysis we aimed at tracking the across-day changes
in the internal model of individuals. The rationale behind this choice is twofold. First, while
the non-parametric Bayesian approach is relatively data-thrifty, flexibility of the model comes
at a price that it is still characterized by a larger number of parameters (a transition matrix
with N � (N + 1) parameters and emission matrix with 4N parameters, where N is the number
of latent states). As a result, changes in the internal model cannot be reliably captured by a few
button presses. In order to have a cross-validated measure of model performance we use non-
overlapping data sets for learning the model and testing it. This also imposes a limit to how
finely we can track changes in the internal model. Consequently, while theoretically there will
be changes on a smaller time scale (especially on day one of the exposure), for practical rea-
sons, to have a stable inference, we learn the model from the response times once in every ses-
sion. Second, our analysis showed that there are substantial changes in the internal model even
days after first exposure, which suggests slower learning processes, which can be reliably cap-
tured with across-day comparisons.

To test that the proposed inference algorithm is capable of the retrieval of the probabilistic
model underlying response time sequences, we validated our inference algorithm on synthetic

Fig 2. Inference and predictions using the internal model. A We formulate the internal model as an iHMM, where the number of latent states (grey circles),
transitions between the states (arrows), and the distribution of possible stimuli for any given state (coloured squares) needs to be inferred by the experimenter. Width of
arrows is proportional to transition probability and arrows are pruned if the transition probability is below a threshold; size of dots indicates the probability of self-
transition. Size of stimuli is proportional to appearance probability in the given state. The result of inference is a distribution over possible model structures, the figure
represents a single sample from such a distribution. B Evolving the internal model from trial t to trial t + 1. At time t, participants use the internal model components
to update their beliefs over the current state of the latent states (Ba, size of dark purple discs represent the posterior belief of the latent state based on the current
observation, blue square). Then, participants play the model forward into the future (open purple circles). Finally, they generate predictions for the upcoming stimulus
(Bb, squares in grey boxes) by summing over the possible future states (open purple circles in grey boxes). Participants use previous state beliefs and the new stimulus to
update latent state beliefs. In this particular example, at trial t + 1 only one of the possible states can generate the observation, hence there is only one dark purple disk.
Again, they play the dynamics forward and predict the next stimulus. C Predicted response times against actual response times are shown for individual trials for an
example participant (dots). After training our inference algorithm on a training dataset of 10 blocks, we predict response times of another 10 blocks on the same day.
Performance is measured as the trial-by-trial coefficient of determination between measured and predicted response times (R2, coloured label).

https://doi.org/10.1371/journal.pcbi.1010182.g002
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Internal model

We inferred individual internal models of human participants based on response times measured on a
visual sequence learning task
We used a machine learning tool, called Cognitive Tomography to reconstruct individual internal latent
models of the task from response times
Main collaborator: Dezső Németh (Université Claude Bernard Lyon 1, CNRS, ELTE)
Publication: Török B, Nagy DG, Kiss M, Janacsek K, Németh D, Orbán G (2022), ”Tracking the
contribution of inductive bias to individualised internal models”, PLoS Comput Biol 18(6): e1010182

Context dependent V1

Mice perform a context-dependent cross-modal decision task where the interpretation of identical
audio-visual stimuli depends on task context
Main collaborator: Peyman Golshani (UCLA)
Experimental data: neurophysiological measurements in mice (from V1 and ACC)
Publication: Hajnal et al., ”Continuous multiplexed population representations of task context in the mouse
primary visual cortex”, 2023, Nature Communications

Models for optimal forgetting
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Figure 1: The dynamics of forgetting: memory undergoes changes and information is systematically 

discarded over time, which provides insights into the sensitivities of memory. An account of 

information loss would be to simply lose memory through “fading”: uniformly losing precision when 

reconstructing episodes from memory. Instead of such non-specific information loss, compression 

with latent-variable generative models implies that reconstruction errors reflect uncertainty in latent 

features. As the delay between encoding and recollection increases, latent variable representation of 

the stimulus is reshaped and we can capture signatures of lower-rate compressions.  

 

We modelled forgetting in a 𝛽 − VAE setting and connceted to rate-distortion theory
We tested our theoretical insights in three domains: recalling chess game configurations, sketch drawings
and words
Publication: David G Nagy, Balázs Török, Gergő Orbán, ”Optimal forgetting: Semantic compression of
episodic memories”, PLoS Comput Biol 16(10): e1008367

Effects of Attention in V1

generally multivariate therefore define joint distributions
over visual features that are represented by individual
neurons or neuron populations. Probabilistic sampling
provides a computational framework for the neural repre-
sentation of probability distributions, such that variability
of individual responses and correlations are naturally
occurring as part of the representation of uncertainty
[58,23!]. Such variability in the representation of
task variables introduces collective modulations of sen-
sory cortical correlations through top-down influences
[22!,43!] (although see [59] for a discussion of temporal
dynamics of ILCs). A phenomenological model of the
response statistics of V1 neurons also identified global
modulations as a potential source of NC patterns which
also accounted for a form of stimulus-dependence of the
NC structure [6]. A further consequence of the collective
modulation by the task variable is the task-dependence of
the NC structure, which has been demonstrated in mon-
key recordings [7!!]. Alternatively, such top-down effects
can manifest in the fluctuations of the prior expectations
which can also introduce correlated variability [60]. Fluc-
tuations in top-down modulations are also consistent with
the form of single-cell variability observed along the
visual pathway [61] as well as global changes in the
amount of shared variability due to attention [62].

Consequently, we can use hierarchical inference as a
framework to formulate a normative theory for the pres-
ence and structure of NCs: in this framework, correlations

are not detrimental, rather they are signatures of the
integration of feedforward and feedback signals and
can explain the connection between information limiting
correlations, choice probabilities, and perceptual task
execution [63,7!!]. Crucially, not only the inference of
task variables is performed at higher levels of the compu-
tational hierarchy but the processing of stimuli also relies
on hierarchically organized computational components
[64–66] (see Figure 1b). Although an important insight
that could be obtained from investigating the inference of
task-related variables [24] was that uncertainty at higher
levels of the hierarchy can explain the emergence and
variations in NCs, feedforward deep neural networks do
not attempt to represent uncertainty associated with the
inferences at different levels of the hierarchy [49]. Fur-
ther confirming the role of top-down modulations in
perceptual processes is the demonstration of both task-
related and perceptual top-down effects in the mean
responses of V1 [25,67]. Taken together, similar to the
dependence of NCs on task variables, low-level NCs are
expected to depend on high-level perceptual inferences,
for example about the presence of high-level visual
structures. Indeed, such stimulus dependence was found
in monkey V1 recordings [5,4!]. A more direct confirma-
tion of the effect of high-level inferences on the NC
structure at lower levels was obtained by testing the NC
structure with natural and synthetic images [46!!]. Stim-
ulus-specific NCs were demonstrated for natural stimuli
but this specificity was reduced when high-level structure
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Figure 1

Hierarchical model structures for vision, featuring perceptual and task variables. (a) Deep feedforward networks learn a feature hierarchy from the
stimulus that supports the task of object classification. Variables learned by the model can be compared with the activity of neurons while
presenting the animal with the same image. Such a perceptual model can capture the mean responses of neurons, but ignores top-down effects
and the representation of uncertainty, both key to understanding NCs. (b) The model of perception as probabilistic inference posits that the goal
of learning is to infer an internal model of the world which describes how observed stimuli are generated. Features in the environment correspond
to latent variables in the model, and dependencies between higher and lower-level latents describe the compositional rules for how high-level
features of the perceptual hierarchy constrain low-level features. While performing inference in the model, inferences about high-level variables
introduce top-down effects at lower levels, resulting in NCs. (c) Learning a task corresponds to learning task variables, for example discrimination
boundaries between animal species or different potential behaviors of a specific animal, acting on the variables of the perceptual model. Learning
the task structure implies that we learn the distribution of possible images that corresponds to different states of task variables. Task variables are
inferred in individual trials and this inference introduces top-down effects shaping NC patterns in the perceptual model. (d) Inference of feature
hierarchies in generative models is possible by augmenting the original model architecture with a feedforward recognition model that infers high-
level latent variables from the stimulus, which are fed back to the perceptual hierarchy in a top-down manner. Different tasks may correspond to
different sets of high-level latent variables inferred on top of shared recognition and generation hierarchies.

www.sciencedirect.com Current Opinion in Neurobiology 2019, 58:209–217

We studied the interactions between attentional and contextual top-signals in V1
Experimental data: neurophysiological measurements in monkey (from V1 area)
Main collaborator: Andreea Lazar (Max-Planck Institute for Neuroscience)
Publication: Andreea Lazar, Liane Klein, Johanna Klon-Lipok, Mihály Bányai, Gergő Orbán, Wolf Singer,
”Paying attention to natural scenes in area V1”, 2023, iScience


