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Introduction

The main research interest of our Department 1s the Solar System and its physical processes. It includes a complex regime of interactions, like the study of the solar interior, 1ts physical
processes, and the effect the solar wind and the interplanetary magnetic field on the ionospheres, and/or magnetospheres of planets, moons, and other objects in our Solar System (like
comets). We are interested in comparing and finding analogies on the plasma environments of planets as well. Also it 1s vital to understand how our direct cosmic environment can affect
our own planet, so space weather 1s another important topic that we focus on.

In order to engage in answering these questions we use the science data measured by several different space missions. We are actively participating in the international mission teams, and
take part in data analysis and the publication of new results. Our team has been 1nvolved 1n several major space missions from the earliest planning phases through the development,
building and testing of onboard instruments and finally the evaluation of the measurements 1n space. The paper presents some of our current researches and achievements.

. . the hellosphere
GVDLMtLDV\/ DH/\/Ol S'PatLaL VI YLD(’CLOV\/ Df SDLO(Y WLV\JO[ structures th YDM’@MDM't ¢ P Comet 67?/014(,“/31/“/\&0\/_

lwner hellosphere - Tewmporal - " ) 0 .
We extrapolate solar wind paramete.rs in 3D in the .inner hehosphzre , ~

with an improved ballistic propagation method, using solgr corotr} )
models as input data. Our enhanced model considers the 1pteritic 10
of slow and fast solar wind by applying a pressure co'rrecu;r;l uSrnIllg .
propagation. It also incorporates the d1ff§r§ntlal rootatmn 0 1.t e hu ™
in order to achieve a more accurate prediction at hlg.he:r heliospher
latitudes (Timar et al. 2023, submitted to J SWSC, Biro et al.,

submitted to AGU Space Weather). | |
Furthermore, we also developed a method to analyze the orientation

. . : . . Wthh Longitude (°) oy
of stream interfaces in corotating interaction reglons (CIR), ind velocity in the ecliptic (a) and at

(

Serasimenko - The dynamics of the magnetic field free cavity around comets
Thé diamagnetic cavity is the innermo
active comet from which the ma
matter. This phenomenon, first
extensively studied recently by
observed a surprisingly large di

67(?/}1(?huryumov—§}erasimenko and revealed an unforeseen structure, rich

1ei/rllfﬂ;ghly dynamic. We presented a simple (1+1)-dimensional anaI};tic

o en;f)ecilel .of the dlan.lag.n.etlc cavity, which for the first time explained the o
p size and variability of the cavity (Németh, 2020). omet 67F/Churyumov-Gerasimenko and

Rosetta (rosetta.esa. int)

) st region of the magnetosphere of an
gnetic field is expelled by the outflowing
detected around comet 1P/Halley, was

the Rosetta comet chaser mission. Rosetta
amagnetic cavity around comet

600

500

Latitude (°)
Solar wind velocity (km/s)

~ 1400

300

270°

)

cles-basen wmoonels

ers of solar dynamo models induce cycle

erturbed nonlinear dynamo

aramet . fore "
dy of stochastlcally p an irregular, quasi-peﬂOdlC phenomenon,

ar cycle 1S - including the
Indeed, the 11-ye_ar Sf)l , yL _term variations arc also present, e
between rather wide limits. Long arying Parameters

: fv .
d a systematic analysis of the effects O e objective Was

's large-scale magnetic fiel

on of the Sun : of non-
hltlOariatioms that correspond to particular types

alafha, 2019)

-to-cycle variations 1n the

o by ph :
e solar dywamo 0Y P J s is therefore intimately linked

Sun - Stmulation of th e
chastic variations i the p
' d. The stu
' ted magnetic fiel s
ne dynamo-generated Thc: e
re'Stuhlt;tugdie?,s of long-term variations of solar activity
wl

- . dividual cycles varying
lengths an® amphtuder?dotileng/?;dem Maximum. We have performe

Maunder Minim}lmoihn ations describirtlg the;l ft\l/ sity :
ifferent types of nonl o of long-term
?o find the signatures 10 ctrovay and T

linearities Of parameter cO

~y ' ' thn

. y i
l*’*h-‘ y 72N :
‘. . ’

b

Nonlinearities and/or sto

earities of the equ

the statistical propertl

mbinations. (Talafha et al., 2022; P

Slant planets | -

Closed field Line vortices in planetary mag netospheres

We have recently shown [1] that the magneto-
sphere of giant planets has a strange new (N
domain, in which the behavior of the plasma and
the Ipagnetic field is radically different from any
| Previous expectations. The magnetic field lines
of this domain are closed (attached to the planet
with both ends) but do not rotate around the
planet as expected. The middle points of these
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We study the magnetic appearances of small-scale plasma irr.egutllzlmt}fs hlfl the |
terrestrial upper ionosphere (altitude of abqut 500 km) by uslng‘SS ieon t?i iplet, Ttis ﬁeld lines are anchored in slowly moving plasma
frequency (50 Hz) magnetic field observations of the ?warm I}I:el:nomena ' n the far magnetotail, so these points cannot
argued that the irregularities evolvoe due to turbl.llent plasma p Makine use of the orbit the plapet. At the same time the fo otpoints Closed field line vortices in planetary
exhibiting scale-dependent intermittent magnetic fluctuations. g of the field lines, where they are attached to the magnetospheres, (Nemeth, 2023)
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0 particle and magnetic fio]q €Xperiments o ‘ntensive intermittencies are apparent in the auroral oval and near to the ows that this swirling motion does indeed occur in Saturn's magnetosphere. The neWa
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equator (near 10° of latitude in both hemispheres), resulted in by equatorial Kronian bow shock
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: . «ionals is also concerned, via the monitorng o g gnetize
the propagation of GNSS radio signa

T s (i.¢. scintillations) onboar d the Swarm planer, which are generated due tg the wave-particle interaction between backstreaming
loss of lock events and signat dis%0 - solar ions and nonlinear, compressive ULF waves in the quasi-parallel upstream region.

triplet as well as 1n ground GNSS stations. SLAMS have been observed at Earth’s quasi-parallel bow shocks (BS) by the CLUSTER

1 distribution of the intermitiency propes. In our work we identified agd.thoroughly analysed four SLAMS events near the BS
indices (IMI) in terms of geomagnetic region of Saturn, by the use of Cassini’s plasma and magnetometer records. It was found that

ionosphere footprint of the plasmapause.
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Laitnde and magnetic local time formation of SLAMS is possible upstream of Saturn through the same mechanism, like at the
(MLT), in the upper ionosphere Earth, however, the characteristic time scale for the events is longer due to the smaller
(northern polar region). IMIs were upstream magnetic field values. ULF wave formation can be observed near the BS, and in

M e collected for Swarm A & C & B
spacecraft, for the period of 2014-
6 2(022. Black solid lines show the

several ipstances the whistler precursor waves were also present. Although with Cassini it is
not possible to analyze the spatial distribution of the observed magnetic structures (like with

8L =LA

MLT =6

 models of the polew ard and the CLUSTER probes), we can assume that their principal propagation mechanisms and
equatorward boundaries of the steepening are similar to those observed in the terrestrial upstream regime.
auroral oval (Xiong et al, 201%) During most of the events the (locally) quasi-perpendicular behavior of the SLAMS fronts

Blue dots represent the plasmapause
model of Heilig and Liihr (2018).

were verified, as plasma heating, deceleration, and beam deflection at the structures were all

obsewed. These features are common with the events previously observed in the terrestrial
quasi-parallel upstream region (Bebesi et al., 2019).
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