Wigner 121 Scientific Symposium

Wigner Research Centre for Physics **Institute for Solid State Physics and Optics Department of Experimental Solid State Physics** Structure Research Laboratory

Phase-field Modeling of Biomorphic Solidification

László Rátkai, Éva Kováts, Gyula Faigel, Tamás Pusztai, László Gránásy

Introduction

The nanocrystalline, inorganic composites known as "biomorphs" form micron-scale structures such as helices, sheets, funnels, coral-like, and arboresque patterns made of alkaline earth metal (Ca, Sr, or Ba) carbonates assembled into high-aspect-ratio nanorod structures covered by silica, when precipitating from solution on solid substrate^{1,2}. While reaction-diffusion models recovered essential features of such 2D and 3D aggregation processes³, we explore here whether the orientation field-based phase-field models⁴ developed for polycrystalline solidification could describe various aspects of the formation of biomorphic structures. This model relates solidification morphology to thermodynamics, interfacial properties and chemical diffusion.

Phase-field model

Order parameters

phase-field: $\phi \in [0, 1]$ ($\phi = 0$: liquid, $\phi = 1$: solid) concentration field: $c \in [0, 1]$ orientation field: $\mathbf{q} = (q_x, q_y, q_z, q_w)$ unit quaternion, $\Sigma_i q_i = 0$

Free energy functional

_	0
•	

Experimental motivation

Our PF simulations

orientational coloring

isosurface at ϕ = 0.5

$F = \int d^3r \left\{ \frac{\epsilon_{\phi}^2 T}{2} |\nabla \phi|^2 + WTg(\phi) + [1 - p(\phi)]f_S(c) + p(\phi)f_L(c) + 2HT(1 - p(\phi)) \left[\sum_i (\nabla q_i)^2 \right]^{1/2} \right\}$

Equations of motion

$$\begin{aligned} \dot{\phi} &= -M_{\phi} \frac{\partial F}{\partial \phi} + \xi_{\phi} = M_{\phi} \left\{ \nabla \left(\frac{\partial I}{\partial \nabla \phi} - \frac{\partial I}{\partial \phi} \right) \right\} + \xi_{\phi} \\ \dot{c} &= \nabla M_{c} \nabla \left(\frac{\partial F}{\partial c} - \xi_{j} \right) = \nabla \left\{ \frac{V_{m}}{RT} Dc(1-c) \nabla \left[\frac{\partial I}{\partial \phi} - \nabla \frac{\partial I}{\partial \nabla \phi} - \xi_{j} \right] \right\} \\ \dot{q}_{i} &= -M_{q} \frac{\partial F}{\partial q_{i}} + \xi_{i} = M_{q} \left\{ \nabla \left(\frac{\partial I}{\partial \nabla q_{i}} - \frac{\partial I}{\partial q_{i}} \right) \right\} + \xi_{i} \end{aligned}$$

Statistics of structures (simulations)

Solidification starts with circular seeds of pixelwise random orientation. Frequency structures from 90 of simulations for each seed size (radius).

Catalogue of structures (simulations)

Noorduin et al., Science, 340, 6134, 832-837, 2013

BaCO₃-SiO₂ biomorphic structures (SEM)

Funnels

Thicket-like structures

References

[1]: J. M. Garcia-Ruiz et al. Science 302, 1194, 2003 [2]: W.L. Noorduin, et al. Science 340, 832, 2013 [3]: C.N. Kaplan et al. Science 355, 1395, 2017 [4]: L. Gránásy, L. Rátkai, et al. Metall. Mater. Trans. A 45, 1694, 2014

Acknowledgment This work was supported by the NKFIH under contract no. KKP-126749

