

Construction of a tracking detector for the future experimental exploration of particle interactions

Viktor Veszprémi

Wigner RCP

Dept. of High Energy Experimental Particle and Heavy Ion Physics,

Standard Model and New Physics Research Group

WIGHER Searching for the new physics

- Extending our knowledge in particle interactions by
 - advancing specialized fields: QCD, B-physics, and HI
 - direct search for the unknown
 - investigate known particles, deviation from theory (precision measurements)

• Direct searches for new physics

- resonance searches, differences from expected distributions, e.g. di-muon invariant mass spectrum
- model-guided searches
 - assuming very simple (natural) supersymmetry production process

But discovery of any **other** new physics is not ruled out! (in similar final states)

Wigner Boosted SUSY

- Exclusion: 5% chance that we falsely rule out the existence of these processes (e.g. in blue area: they have occurred in ~180 collisions but were considered measurement error of the background)
- Search for SUSY published in 2019 (1 PhD in our group)
- Extended search with ~4 times more data being prepared for publication in 2023 (+1 MSc so far)
- Interesting next time in ~2026-27

Viktor Veszprémi

Assumed appearance of SUSY processes in the pp collisions, leading to "boosted" ojects

Unmerged hadronic top

Partially merged hadronic top

(W jet + b jet)

Inclusive search in Of & 1f final states

upper

WIGNER Precision physics

Standard model processes are thoroughly tested

- Motivates more precise theoretical calculations
- Signs of new physics: deviations from theoretically expected parameters or cross-sections
- Simulations also need to be improved for better background estimates
 - e.g. for measuring properties of the Higgs boson

 \rightarrow Not even all Higgs couplings are observed, yet

WETER Various Higgs decays (couplings)

Viktor Veszprémi

Wigner Higgs decays to charm and Z + cc

• Beyond this motivation, also poorly modelled

 \rightarrow outstanding topic for the QCD calculations

- No measurements exist for Z + cc cross-sections at the LHC at 13 TeV
- We are also working on the Z + cc / Z + bb cross-section ratio measurements in Run 2 data

Wigner Limits in collision rates

How to make progress with these measurements \rightarrow Need more statistics!

- in the LHC, only possible by increasing pp-collisions per beam-crossing
 - leads to larger data-rate (busy events)

V Veszpremi JINST 12 (2017) C12010

Viktor Veszprémi

Wigner CMS Phase 2 Tracker

Tracker Barrel with **PS** modules

Tracker Barrel with 2S modules

- Two types of semiconductive silicon modules (,,p_T modules'')
 - 7608 2S modules (at r > 60 cm) + 5592 PS modules (at r < 60 cm)
 - 190 m² total silicon area, 213 million readout channels

Tracker Endcap Double-Discs

Requirements for the OT:

- increased radiation hardness
- extended pseudo-rapidity coverage
- higher granularity, better track separation
- compatible with higher data rates
- provide information to the L1 trigger

K Marton doi.org/10.5281/zenodo.8346835

Wigner The p_T modules

- Standalone units (power and readout)
- Two silicon sensors, separated by a few millimeters and read out by common front-end electronics
- Provides tracking information to the L1 trigger at every bunch-crossing (40 MHz)

2S module

- both sides **micro-strip sensors**
- front-end hybrid (**2S-FEH**) electronics wire-bonded to the strips
- one service hybrid (**SEH**) for powering, control, and datatransfer

2 columns of 1016 strips

• cell size: 5 cm x 90 µm

Top: 2 columns of 960 strips

• cell size: 2.5 cm x 100 μm

PS module

- top side **micro-strip sensor**
- bottom side macro-pixel sensor
- 16 chips bump-bonded to bottom
- front-end hybrids (PS-FEH) wire-bonded to the sensors
- powering (POH) and read-out (ROH)

Viktor Veszprémi

Wigner Trigger matters!

Recent inclusive search for long-lived exotic particles

• Data taken in 2022: muons from common decay vertex ~100 µm to meters away from pp-interaction

Present CMS trigger: Level-1 hardware

- + High-Level Trigger (HLT) in CPU farm
- Level-1 triggers muon-only → relaxed selections allowed HLT to partially use tracking information

Viktor Veszprémi

Wigner The CMS Phase 2 trigger system

Phase 2 Level-1 trigger will perform full event-reconstruction on-the-fly!

- New trigger decision time expanded to **12.5 us**
- Decision based on full particle flow reconstruction!
- Event reconstruction implemented in FPGA-s

Wigner Outer Tracker L1 trigger

- Curvature of particles tracks \rightarrow transverse momentum measurement
- Hit-pairs from the bottom and top sensors are matched
 - \rightarrow form short track segment (stub) if compatible with pp interaction region

- Stub information sent to the track finder (FPGA) system at every bunch crossing
- Track finding in two steps: pattern recognition and track fitting
- Full readout up to 750 kHz!

Wigner High-rate test

OT read-out to be tested in realistic conditions

- **CHROMIE** test-beam telescope (see more <u>here</u>)
 - To perform extensive system-level testing before production (radiation tolerance, speed, resolution)
 - Electronics produced by Wigner joint with local company, reconstruction software by our group
- "mini"-CRHOMIE: smaller version sold to Strasbourg to be used in high-rate test at Cyrce

TTC-FC7: FPGA-based µTCA back-end electronics system and firmware development ongoing

- Emulate Phase 2 timing, trigger and control

Test crate

WIGNER Visual Inspection of the hybrid circuits

Good quality hybrids are necessary for module assembly and for long-term reliability

- \rightarrow VI will be performed on nearly 50,000 hybrid electronics during production 2/3 at CERN + 1/3 at Wigner RCP
- Stereo-microscopes will be used to check
 - bond pads
 - soldering quality and component correctness
 - cleanliness of the circuit
 - alignment and adhesive aspect of the layers
 - local and global flatness, etc.
- Manual measurements: weight, flatness, etc.
- Automated measurements with a large area optical scanner and special image processing

K Marton poster@LHCC

Cleanroom

- Interesting direct searches for new physics are being pursued at CMS
- Enormous amount of work is done also in precision physics measurements
- The properties of the Higgs boson are still being tackled, however, some channels will need significantly more collision data
- The High-Luminosity LHC will need entirely new detectors to cope with higher pp-collision rates
- The production of the new CMS Phase 2 tracker is starting now with the participation of Wigner RCP

Wigner Feedback to theory

$Measurement \, of \, the \, Z \, boson \, production \, cross \, section \, in \, pp \, collisions \, at \, 13.6 \, TeV$

Wigner Higgs boson mass and width measurements

$H \to 4\ell$ decay channel using the full Run2 LHC dataset

Viktor Veszprémi

Wigner 121 Scientific Symposium, 18 September 2023

HIG-21-019

Strip detector signal to noise ratio

• Strip detector

- Active fraction of Strip detector is stable
- Performance keeps evolving along expected trend

• Pixel detector:

- Lost 4-hit coverage in about 3% of the barrel area due to a hardware failure in the master alayers
- Change in performance due to radiation damage in layer 1 slowed down as expected, uni 2023
- Despite the larger average pileup in recent fills, the efficiency remained high

Smooth restart coming back from powered-down state over August

Viktor Veszprémi

Wigner The CMS Phase 2 Upgrade

Viktor Veszprémi

Wigner Optical tests of Phase-2 Outer Tracker FE hybrid electronics

Assembly of more than 13.2 k OT modules in ~3 years

- Thorough component testing before module assembly to check production quality, component alignment, etc.
- ~55k hybrid circuits to be inspected from Feb 2023 at Wigner RCP (~20k) and CERN
 - 2 technicians to be hired from mid-2024
 - Collaboration with CERNTech (engineering) and FFT Kft (maintenance of clean room)

100µm wide pads for wire-bonding (to inspect: cleanliness, color, damages)

Soldering & alignment to be checked

Infrastructure and equipment

- 15 m² ESD-safe laminar clean room with 3 air filtering stages (cleanliness > ISO7) with active ventilation, humidity and temperature monitoring and control
- Leica M205C stereo-microscope with motorized vertical stage
- 2 x Nikon SMZ800N stereo-microscopes
- Large area optical scanner (60 cm x 90 cm) with
 - \sim 5 μm resolution

Viktor Veszprémi