

www.casus.science

Examining the Nonlinear Response of Quantum Electrons with the Assistance of the Wigner Distribution Function

Dr. Zhandos Moldabekov

Center of Advanced Systems Understanding, Helmholtz-Zentrum Dresden-Rossendorf

of Education

and Research

FÜR WISSENSCHAFT

My previous visit of Budapest

The Presentation Plan

- Linear Response Theory of Correlated Quantum Electrons
- Extension to a Non-Linear Response Regime
- General solution for Non-Linear Response functions of Electron Gas using Wigner Distribution Functions

Research Object: Warm Dense Matter

Wigner-Seitz radius
$$r_s = \frac{d}{a_B} = \left(\frac{3}{4\pi n_0}\right)^{1}$$

M. Bonitz, Zh. A. Moldabekov and T. S. Ramazanov, Phys. Plasmas 26, 090601 (2019)

Experimental Facilities:

The National Ignition Facility (Livermore) **European XFEL (Hamburg) SLAC National Accelerator** Laboratory (Stanford) **Omega Laser Facility** (Rochester)

....

Applications:

Laboratory Astrophysics

Materials Under Extreme Conditions

Hot Electron Chemistry

Inertial Confinement Fusion

https://photon-science.desy.de

(artist's conception) J. Jett and J. Long, LLNL

Linear Response Theory for Warm Dense Matter

© HZDR / Science Communication Lab

M. Böhme, Z. A. Moldabekov, J. Vorberger, and T.Dornheim PRL 129, 066402 (2022)

Linear Response Theory for Warm Dense Matter (WDM)

Linear Response Theory for Warm Dense Matter (WDM)

Ab initio methods for equilibrium

- Linear-response time-dependent density functional theory (LR-TDDFT):
- can be used for complex materials;
- an approximation to exchange-correlation.

- Real-time time-dependent density functional theory:
- can be used for complex materials;
- an approximation to exchange-correlation.

- Path integral Quantum Monte Carlo (QMC):
- exact;
- restricted to "simple" systems.

Dense plasmas, What we need? uniform electron gas (UEG) model Macroscopic Dynamic density response function a known the Lindhard function reference function $\chi(\mathbf{q},\omega) = \frac{\chi_0(\mathbf{q},\omega)}{1 - \left[v(q) + K_{\mathrm{xc}}(\mathbf{q},\omega)\right]\chi_0(\mathbf{q},\omega)}$ the KS response function **XC-kernel LR-TDDFT** simulations of real materials *

the dynamic structure factor, the dielectric properties, the transport properties, the stopping power ...

* Picture Credit: Grommik // Shutterstock

Static XC-kernel $K_{\rm xc}(\mathbf{q}) = K_{\rm xc}(\mathbf{q}, 0)$

$$K_{\rm xc}(\mathbf{q}) = -\left\{v(q) + \left(\frac{1}{\chi(\mathbf{q})} - \frac{1}{\chi_0(\mathbf{q})}\right)\right\}$$

Utility: Dynamic response in the adiabatic (static) approximation

$$\chi_{\text{stat}}(\mathbf{q},\omega) = \frac{\chi_0(\mathbf{q},\omega)}{1 - \left[v(q) + K_{\text{xc}}(\mathbf{q})\right]\chi_0(\mathbf{q},\omega)}$$

* Picture Credit: Grommik // Shutterstock

Ab Initio Static XC Kernel across Jacob's Ladder without Functional Derivatives

Ab Initio Static XC Kernel across Jacob's Ladder without Functional Derivatives

Finite temperature LDA performs worse than its ground state version !!!

Finite temperature LDA performs worse than its ground state version !!!

In theory of quantum liquids: Local Field Correction

- [LDA] J. P. Perdew and Y. Wang, PRB (1992)
- [PBE] J. P. Perdew, K. Burke, and M. Ernzerhof, PRL (1996).

[PBEsol] J. P. Perdew et. al., PRL (2008).

- **[SCAN]** J. Sun, A. Ruzsinszky, and J. P. Perdew, PRL (2015).
- **[T-LDA]** S. Groth et. al., PRL 119, 135001 (2017)
- [ML] PIMC based parameterization, see T. Dornheim et. al., JCP (2019)

Uniform Electron Gas (**UEG**)

T=3 eV

Let's take a look at hybrid XC functionals !

Non-empirical mixing coefficient for hybrid XC functionals ?

$$E_{\rm xc}[\rho_{\sigma}, n] = E_{\rm c}^{\rm DF}[n] + aE_{x}^{\rm HF}[\rho_{\sigma}] + (1-a)E_{\rm x}^{\rm DF}[n]$$

$$Problem:$$

$$How to choose the mixing parameter ?$$

If conditions vary, as in WDM experiments, why keep the mixing coefficient constant?

*

Zhandos A. Moldabekov, et al **J. Phys. Chem. Lett.** 14, 1326 (2023).

* Picture Credit: Grommik // Shutterstock

•binit

A subsystem functional approach for mixing coefficient

$$K_{\rm xc}(q, a) = K_{\rm xc}^{\rm PBE_{\rm c}}(q) + aK_{\rm xc}^{\rm HF}(q) + (1 - a)K_{\rm xc}^{\rm PBE_{\rm x}}(q)$$

UEG for bulk & the Airy gas for surface regions

Zhandos A. Moldabekov, et al **J. Phys. Chem. Lett.** 14, 1326 (2023)

LR-TDDFT with adiabatic (static) XC kernels

$$\chi(\mathbf{q},\omega) = \frac{\chi_{\mathrm{KS}}(\mathbf{q},\omega)}{1 - \left[v(q) + K_{\mathrm{xc}}(\mathbf{q})\right]\chi_{\mathrm{KS}}(\mathbf{q},\omega)}$$

Dynamic KS response function

$$\chi_{\rm KS}(\mathbf{q},\omega) = \frac{1}{v(q)} \left(1 - \varepsilon_M^{\rm RPA}(\mathbf{q},\omega)\right)$$

$$\varepsilon_M^{\text{RPA}}(\mathbf{q},\omega) = \frac{1}{1 + \frac{4\pi}{|\mathbf{q}|^2} \chi_{\mathbf{GG}}^{\text{RPA}}(\mathbf{k},\omega)}.$$

$$\chi_{\mathbf{GG}'}^{\mathrm{RPA}}(\mathbf{k},\omega) = \chi_{\mathbf{GG}'}^{0}(\mathbf{k},\omega) + \sum_{\mathbf{G}_{1}} \chi_{\mathbf{GG}_{1}}^{0}(\mathbf{k},\omega) \frac{4\pi}{|\mathbf{k} + \mathbf{G}_{1}|^{2}} \chi_{\mathbf{G}_{1}\mathbf{G}'}^{\mathrm{RPA}}(\mathbf{k},\omega)$$

Z. A. Moldabekov, Phys. Rev. Research 5, 023089 (2023)

Extension to a Non-Linear Response Regime

Theory of non-linear response

Linear response regime: $\delta n(\mathbf{r}) = 2A\cos(\mathbf{r} \cdot \mathbf{q})\chi(\mathbf{q}) - |\delta n_{(\mathbf{r})}|/n_{0} \ll 1$

General non-linear response result:

$$\delta n(\mathbf{r}) = 2\,\rho^{(1)}\cos(\mathbf{r}\cdot\mathbf{q}) + 2\,\rho^{(2)}\cos(\mathbf{r}\cdot 2\mathbf{q}) + 2\,\rho^{(3)}\cos(\mathbf{r}\cdot 3\mathbf{q}) + \dots$$

Theory of non-linear response

General non-linear response result:

$$\delta n(\mathbf{r}) = 2\,\rho^{(1)}\cos(\mathbf{r}\cdot\mathbf{q}) + 2\,\rho^{(2)}\cos(\mathbf{r}\cdot 2\mathbf{q}) + 2\,\rho^{(3)}\cos(\mathbf{r}\cdot 3\mathbf{q}) + \dots$$

•
$$\rho^{(1)} = \chi^{(1)}(\mathbf{q}) \ A + \chi^{(1, \text{cubic})}(\mathbf{q}) \ A^3$$

• $\rho^{(2)} = \chi^{(2)}(\mathbf{q}) \ A^2$
• $\rho^{(3)} = \chi^{(3)}(\mathbf{q}) \ A^3$

[1] T. Dornheim, M. Böhme, Z. A. Moldabekov, J. Vorberger, and M. Bonitz, Phys. Rev. Research 3, 033231 (2021)

Linear static density response function for rs = 2

Quadratic static density response function for rs = 2

$$\rho^{(2)} = \chi^{(2)}(\mathbf{q}) \ A^2$$

Cubic static density response function at the first harmonic for rs = 2

$$\rho^{(1)} = \chi^{(1)}(\mathbf{q}) A + \chi^{(1,\text{cubic})}(\mathbf{q}) A^3$$

Cubic static density response function at the third harmonic for rs = 2

General solution for Non-Linear Response functions of Electron Gas using Wigner Distribution Functions

CASUS CENTER FOR ADVANCED SYSTEMS UNDERSTANDING

Quantum kinetic theory in the Wigner representation for the calculation of the calculatio

$$\left\{\frac{\partial}{\partial t} + \boldsymbol{v} \cdot \frac{\partial}{\partial \boldsymbol{r}}\right\} f(\boldsymbol{r}, \boldsymbol{p}, t) = \frac{\imath}{\hbar} \int \frac{\mathrm{d}^3 \lambda \mathrm{d}^3 \bar{\boldsymbol{p}}}{(2\pi)^3} \exp\left[\imath \left(\boldsymbol{p} - \bar{\boldsymbol{p}}\right) \cdot \boldsymbol{\lambda}\right] \\ \times \left[U_{\mathrm{ext}} \left(\boldsymbol{r} + \frac{\hbar}{2} \boldsymbol{\lambda}, t\right) - U_{\mathrm{ext}} \left(\boldsymbol{r} - \frac{\hbar}{2} \boldsymbol{\lambda}, t\right)\right] f(\boldsymbol{r}, \bar{\boldsymbol{p}}, t).$$

$$\widetilde{\chi}_{0}^{(l,l)}(\boldsymbol{x},Z) = \frac{1}{(l-1)!} \frac{1}{l!} \frac{\Theta^{l-1}}{x^{2l-2}} \left[l\widetilde{\chi}_{0}(l\boldsymbol{x},lZ) + \sum_{m=1}^{l-1} a_{m,l} \\ \times \widetilde{\chi}_{0}(m\boldsymbol{x},mZ) \right].$$

The paper on 6 pages and with derivations in the supplementary material on 169 pages !

P. Tolias, T. Dornheim, **Z. Moldabekov**, and J. Vorberger, **EPL** 142, 44001 (2023).

Note: The expressions for I=2 and I= 3 were derived by Mikhailov [PRL, 027405 (2014)].

Putting it all together: an example of a quadratic density reaction

1. Ideal
$$\chi_0^{(2)}(q) = \frac{2}{q^2} (\chi_0^{(1)}(2q) - \chi_0^{(1)}(q))$$

2. RPA

$$\chi_{\text{RPA}}^{(2)}(q) = \frac{\chi_0^{(2)}(q)}{\left[1 - \nu(q)\chi_0^{(1)}(q)\right]^2 \left[1 - \nu(2q)\chi_0^{(1)}(2q)\right]}$$

3. Correlated system

$$\chi_{\rm LFC}^{(2)}(q) = \chi_0^{(2)}(q) [1 - \nu(q)[1 - G(q)]\chi_0^{(1)}(q)]^{-2} \\ \times [1 - \nu(2q)[1 - G(2q)]\chi_0^{(1)}(2q)]^{-1}$$

$$G(\mathbf{q},\,\omega) = -\frac{1}{\nu(q)}K_{\rm xc}(\mathbf{q},\,\omega)$$

Generalization for real materials using KS-DFT simulations:

1. Use the KS response as an ideal density response

2. Use the XC kernel from KS-DFT

www.casus.science

SPONSORED BY THE

STAATSMINISTERIUM FÜR WISSENSCHAFT KULTUR UND TOURISMUS

