Symmetries of spacetimes with a compact Cauchy horizon and the cosmic censor

István Rácz racz.istvan@wigner.hu

Wigner Research Center for Physics

Wigner-121 September 19, 2023

Einstein's theory is a metric theory of gravity

• Eintein's equations: "lhs = rhs"

$$[R_{ab} - \frac{1}{2} g_{ab} R] + \Lambda g_{ab} = 8\pi T_{ab} ,$$

- with matter fields satisfying their field equations
- with energy-momentum tensor T_{ab} and with cosmological constant Λ
- ${\ensuremath{\bullet}}$ in local coordinates $x^1,...,x^4$ the Ricci tensor reads as

$$R_{\alpha\beta} = \partial_{\varepsilon} \Gamma^{\varepsilon}{}_{\alpha\beta} - \partial_{\alpha} \Gamma^{\varepsilon}{}_{\varepsilon\beta} + \Gamma^{f}{}_{\alpha\beta} \Gamma^{\varepsilon}{}_{\varepsilon\varphi} - \Gamma^{\varphi}{}_{\varepsilon\beta} \Gamma^{\varepsilon}{}_{\alpha\varphi} \,, \ \, \text{where} \label{eq:Radius}$$

$$\Gamma^{\gamma}{}_{ab} = \frac{1}{2} g^{\gamma \varepsilon} \left\{ \partial_{\alpha} g_{\varepsilon \beta} + \partial_{\beta} g_{\alpha \varepsilon} - \partial_{\varepsilon} g_{\alpha \beta} \right\}$$

- nonlinear: the $\Gamma\,\Gamma$ terms are quotients of 8^{th}-order polynomials of g and ∂g
- was so difficult to solve these nonlinear equations without assuming *algebraic specialness of the curvature* or/and several types of *spacetime symmetries*
- \implies the corresponding **exact solutions** could only represent **some isolated points in the space of solutions** of Einstein's equations.

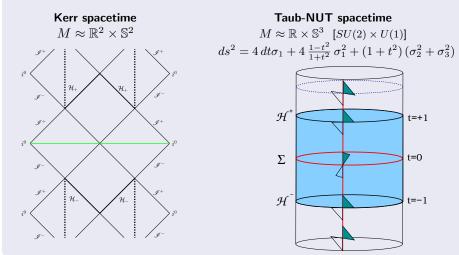
István Rácz (Wigner RCP)

Spacetimes as Cauchy developments:

- Yvonne Choquet-Bruhat (1952): Einstein's equations as a set of coupled quasi-linear wave equations: existence & uniqueness of local solutions
- another celebrated result of Choquet-Bruhat and Geroch (1969): They proved the existence of unique (up to the diffeomorphism invariance of the theory) maximal Cauchy developments.
- In short, we can say that Einstein's theory has a well-posed initial value formulation: ∃ a map that is "one-to-one" & continuous & causal
- (!) linear PDEs with regular coefficients on Minkowski spacetime are guaranteed to have "global in time" solutions
- the singularity theorems of Penrose, Hawking, and Geroch taught us lessons that even the "maximal Cauchy developments" may guarantee only "local in time" existence
- since there is **no fixed background** in GR \implies the topology of M need not to be \mathbb{R}^n , Cauchy problem: M is constructed together with the metric

Could the predictive power of Einstein's theory be limited ?

 ∃ exact solutions in which the maximal Cauchy development of the data, induced on some otherwise maximal initial data surface, is a proper subset of the complete solution.



The strong cosmic censor hypothesis by Penrose

• **Penrose's SCCH:** Sufficiently generic spacetimes are maximal globally hyperbolic developments, so they are never part of a larger spacetime.

A conjecture by Vince Moncrief

- Moncrief made extensive study of closed cosmological spacetimes in the early 80s'
- He concluded that spacetimes with a compact Cauchy horizon always admit a Killing vector field which is null on the horizon $\mathcal H$ and spacelike on $D(\Sigma)$
- Since spacetimes with symmetries are always special (not generic) if Moncrief's conjecture is true - we have an indirect verification of Penrose's SCCH for spacetimes admitting a compact Cauchy horizon.

Moncrief's conjecture turned out to be correct, but the progress took some time

- 🔮 (1983) Moncrief, Isenberg: Symmetries of cosmological Cauchy horizons, Commun. Math. Phys. 89, 387-413 C^ω, with closed generators
- (1999) Friedrich, Rácz, Wald: On the Rigidity Theorem for Spacetimes with a Stationary Event Horizon or a Compact Cauchy Horizon Commun. Math. Phys. 204, 691-707
- (2000) Rácz: On Further generalizations of the Rigidity Theorem for Spacetimes with a Stationary Event Horizon or a Compact Cauchy Horizon, Classical Quant. Gravity 17, 153-178 C[∞], with closed generators, involving Klein-Gordon, Maxvell, Yang-Mills-Higgs and dilaton fields
- (2020) Moncrief, Isenberg: Symmetries of cosmological Cauchy horizons with non-closed orbits, Commun. Math. Phys. 374, 145-186 C^ω, with "generic" generators in 4-dim
- (2023) Petersen and Rácz: Symmetries of Vacuum Spacetimes with a Compact Cauchy Horizon of Constant Nonzero Surface Gravity, Ann. Henri Poincaré, https://doi.org/10.1007/s00023-023-01335-9 generic vacuum case (allowing ergodic generators)

Our results (covered by the last paper) apply to:

- $\bullet\,$ any C^∞ connected time-oriented spacetime (M,g) of dim $n\,(\geq 2)$
- $\exists \Sigma$ a closed acausal topological hypersurface in M such that its **Cauchy** development $D(\Sigma)$ is a globally hyperbolic proper submanifold in (M, g)
- one of the Cauchy horizons, denoted by \mathcal{H} , [could be the future or the past one $\mathcal{H}^{\pm} := \overline{D^{\pm}(\Sigma)} \setminus D^{\pm}(\Sigma)$] was assumed to be **non-empty and compact**
- if the null convergence condition holds $[R_{ab}L^aL^b \ge 0$ for all lightlike vectors $L^a]$ \mathcal{H} is a smooth totally geodesic submanifold in M. $[R_{ab} = 0 \text{ in vaccum}]$
- also \exists a C^{∞} fn. κ and a C^{∞} non-vanishing vector field V, tangent to the generators of \mathcal{H} , such that

$$\nabla_V V = \kappa \, V$$

- assumed: by rescaling V, κ can be guaranteed to be a **non-zero constant** (proven by Bustamente, Reiris; Gurriaran, Minguzzi 2021-22, " $\neq 0$ " in all known examples)
- We also have then that:
 - \exists a nowhere vanishing one-form ω on \mathcal{H} : tangent bundle $T\mathcal{H} = \mathbb{R}V \oplus ker(\omega)$
 - a time function $t: [0, \varepsilon) \times \mathcal{H} \to \mathbb{R}$ in a neighborhood of \mathcal{H} : its gradient $\partial_t|_{\mathcal{H}}$ is everywhere transverse to \mathcal{H}

Theorem: [Existence of a Killing vector field]

Assume that $R_{ab} = 0$ and that \mathcal{H} is a compact Cauchy horizon in (M,g) such that its surface gravity can be normalised to a non-zero constant. Then (regardless if the generators of \mathcal{H} are closed or ergodic) there exists a smooth non-trivial Killing vector field W^a

$$\mathcal{L}_W g_{ab} = 0$$

on $\mathcal{H} \sqcup D(\Sigma)$, such that W^a is **lightlike on** \mathcal{H} and **spacelike in** $D(\Sigma)$ **near** \mathcal{H} , and **any smooth extension of** W^a across \mathcal{H} to the complement of $\overline{D(\Sigma)}$ is **timelike near the horizon** \mathcal{H} .

• The proof we applied was based on two key steps:

We used a pair of coupled wave equations:

Lemma:

relating an arbitrary smooth vector field V^a to the Lie derivatives of the metric g_{ab} and the Ricci tensor R_{ab} with respect to V^a

$$\nabla^{e} \nabla_{e} V^{a} - \nabla^{f} \left[\mathcal{L}_{V} g_{fh} + (\nabla_{e} V^{e}) g_{fh} \right] g^{ha} = -R^{a}{}_{f} V^{f}$$

$$\nabla^{e} \nabla_{e} \left(\mathcal{L}_{V} g_{ab} \right) + 2R_{a}{}^{e}{}_{b}{}^{f} \left(\mathcal{L}_{V} g_{ef} \right) + \mathcal{L}_{\left[-\nabla^{e} \nabla_{e} V \right]} g_{ab} = -2\mathcal{L}_{V} R_{ab}$$

$$-\mathcal{L}_{\left[R^{e}{}_{f} V^{f} \right]} g_{ab} + 2R_{(a)}{}^{f} \mathcal{L}_{V} g_{f|b})$$

(1) We proved that solutions to these wave equations, with initial data on a compact Cauchy horizon, \mathcal{H} , extend into the globally hyperbolic domain, $D(\Sigma)$.

Remarks:

- no use of Einstein's equations or any other filed equation
- hold for any sufficiently regular vector field V^a
- the signature of g_{ab} does not matter, so it could be arbitrary
- for a metric of Lorentzian signature on the horizon \mathcal{H} $\nabla^e \nabla_e \dots = -2 \nabla_V \nabla_t \dots + c \nabla_t \dots + \{\text{l.o.lin.diff.op. acting along } \mathcal{H} \}$

István Rácz (Wigner RCP)

Our main trick used the "maximum principle":

• (2) We showed that not only the Lie derivative of the metric, $\mathcal{L}_V g_{ab}$, with respect to a "candidate" Killing vector field V, but also its transverse derivatives $(\nabla_t)^k [\mathcal{L}_V g_{ab}]$, up to any order, vanish on \mathcal{H} .

• take any of the C^∞ symmetric 2-tensor fields

$$\mathfrak{a}_{ab} = (\nabla_t)^k \left[\mathcal{L}_V g_{ab} \right] \ (\in E^* \otimes_{sym} E^*) \ \text{on } \mathcal{H}$$

• the metric g, defined on the space of such smooth symmetric 2-tensor fields,

$$\mathfrak{g}(\mathfrak{a},\mathfrak{a}):=g^{ik}g^{jl}\,\mathfrak{a}_{ij}\mathfrak{a}_{kl}$$

is positive definite on $E^* \otimes_{sym} E^*$ since g is such on $E = ker(\omega)$

• using $\nabla^e \nabla_e \dots = -2 \nabla_V \nabla_t \dots + c \nabla_t \dots + \{\text{l.o.lin.diff.op. acting along } \mathcal{H}\}$ and its time-derivatives, we showed that the equation holds, with $\beta \neq 0$, on \mathcal{H}

$$\mathrm{d}_V\mathfrak{g}(\mathfrak{a},\mathfrak{a})+\beta\,\mathfrak{g}(\mathfrak{a},\mathfrak{a})=0$$

• \mathcal{H} is compact, the function $\mathfrak{g}(\mathfrak{a},\mathfrak{a})$ must attain its maximum and minimum. whence at these locations $d_V \mathfrak{g}(\mathfrak{a},\mathfrak{a}) = 0$ which & $\beta \neq 0 \Longrightarrow \mathfrak{g}(\mathfrak{a},\mathfrak{a}) \equiv 0$!!! no need to refer to the individual generators !!!

- We proved that **any smooth** vacuum spacetime containing a compact Cauchy horizon, with surface gravity that can be normalized to a non-zero constant, **admits a Killing vector field**
 - Our result is generic. It holds in any dimension and is independent of the structure of the space of generators of the Cauchy horizon.
- This result, together with the proof that surface gravity can be normalized to a non-zero constant, proves Moncrief's conjecture
 - ⇒The maximal globally hyperbolic vacuum development of generic initial data cannot have a compact Cauchy horizon.
- As an important by-product, our result **supports the validity of the strong cosmic censorship conjecture of Penrose** in the case of closed cosmological spacetimes.