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Strong correlations between electrons → exotic materials

High Tc superconductors Single molecular magnets (SMM)

Nitrogen fixation Battery technology



Experimental realizations: optical lattices

Numerical simulations: model systems

Atoms (represented as blue spheres) pictured
in a 2D-optical lattice potential

Potential depth of the optical lattice can be tuned.

Periodicity of the optical lattice can be tuned.

Hubbard model: lattice model of interacting
electron system

H = t
∑
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t hopping amplitude
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σ ∈ ↑, ↓ spin index

Classical or quantum computers?



Simulation of quantum systems via classical computation

Problem:

▶ Ever growing demand for efficient simulation of quantum systems
via classical computation

▶ A fundamental limitation emerges: the so-called curse of
dimensionality, that is, the computational effort scale exponentially
with the system size

Solution:

▶ 1) Searching for algorithms to reduce the exponential scaling by
controlled approximations

▶ 2) Fully taking advantage of modern High-Performance Computing
(HPC) infrastructures



TNS/DMRG provide state-of-the-art results in many fields

H =
∑
ijαβ

Tαβ
ij c†iαcjβ +

1

2

∑
ijklαβγδ

V αβγδ
ijkl c†iαc

†
jβckγclδ ,

▶ Tij kinetic and on-mode terms, Vijkl two-particle scatterings
▶ We consider usually lattice models in real space (DMRG)
▶ In quantum chemistry modes are electron orbitals (QC-DMRG)
▶ In UHF QC spin-dependent inetractions (UHF-QCDMRG)
▶ In relativistic quantum chemistry modes are spinors (4c-DMRG)
▶ In nuclear problems modes are proton/neutron orbitals (JDMRG)
▶ In k-space modes are momentum eigenstates (k-DMRG)
▶ For particles in confined potential modes → Hermite polynoms
▶ Major aim: to obtain the desired eigenstates of H.

• Symmetries: Abelian and non-Abelian quantum numbers, double
groups, complex integrals, quaternion sym. etc

• # of block states: 1 000 – 60 000. Size of Hilbert space up to 108.

• In ab inito DMRG the CAS size is: 70 electrons on 70 orbitals.

• 1-BRDM and 2-BRDM, finite temperature, dynamics

• Massively parallel implementations CPU/GPU→ exascale on HPC



Tensor product approximation

State vector of a quantum system in the discrete tensor product spaces

|Ψγ⟩ =
q1∑

α1=1

. . .

qd∑
αd=1

U(α1, . . . , αd , γ) |α1⟩ ⊗ · · · ⊗ |αd⟩ ∈
d⊗

i=1

Λi :=
d⊗

i=1

Cqi ,

where span{|αi ⟩ : αi = 1 , . . . , qi} = Λi = Cqi and γ = 1, . . . ,m.

α1 α2 α3 α4 α5 α6 α7 α8 γ

U

• In a spin-1/2 model αi ∈ {↓, ↑}.

• In a spin-1/2 fermionic model αi ∈ {0, ↓, ↑, ↑↓}.

dimHd = O(qd) Curse of dimensionality!

• We seek to reduce computational costs by parametrizing the tensors in
some data-sparse representation.



Matrix product state (MPS) representation / DMRG / TT

The tensor U is given elementwise as

U(α1, . . . , αd) =
r1∑

m1=1

. . .

rd−1∑
md−1=1

A1(α1,m1)A2(m1, α2,m2) · · ·Ad(md−1, αd).

We get d component tensors of order 2 or 3.
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A tensor of order 5 in Matrix Product State (MPS) representation also
know as Tensor Train (TT). This yields a chain of matrix products:

U(α1, . . . , αd) = A1(α1)A2(α2) · · ·Ad−1(αd−1)Ad(αd)

with [Ai (αi )]mi−1,mi := Ai (mi−1, αi ,mi ) ∈ Cri−1×ri .

Controlled truncation on mi .

Redundancy:
U(α1, . . . , αd) = A1(α1)GG−1A2(α2) · · ·Ad−1(αd−1)Ad(αd)

Affleck, Kennedy, Lieb Tagasaki (87); Fannes, Nachtergale, Werner (91), White(92),
Römmer & Ostlund (94), Vidal (03); Verstraete(04); Oseledets & Tyrtyshnikov, 2009



Restricted active space DMRG Barcza,Werner,Zaránd,Ö.L.,Szilvási(2021)

a)

ΦA

Φcore

b)

ΦA

ΦV

ΦC

Φcore′

Schematic illustration of the
CAS and RAS concepts.

DMRG-RAS scheme

• In the RAS scheme, in addition to active orbitals some virtual (V) and
core (C) orbitals can also be excited with restrictions: the maximal
number of particle excitations in these orbitals is r .

• Implementation through the dynamically extended active space (DEAS)
procedure. ÖL, J. Sólyom, 2003, (similar appr. by Larsson et al 2022)

Ml = q q q Mr := 16 ≪ 4
3

ML = Mlq MR = qMr



Ground state energy of C2 frozen-core cc-pVTZ (L=58)

• DMRG-RAS is an embedding methodi, i.e.,

H = PHP︸︷︷︸
HCAS→CAS

+ QHP︸ ︷︷ ︸
HCAS→RAS

+ PHQ︸ ︷︷ ︸
HRAS→CAS

+ QHQ︸ ︷︷ ︸
HRAS→RAS

method energy (Ha) ∆E (%)

CI-SDTQ -75.7765 97.8
CC-SDa -75.7496 90.8
CC-SD(T)a -75.7832 99.5
CC-SDTa -75.7810 99.0
CC-SDTQa -75.7845 99.9
NEVPT2(8)a -75.7540 91.9
RAS-SD-DMRG(8,M = 5051) -75.7704 96.2
RAS-SD-DMRG(14,χ = 10−6) -75.7809 99.0
RAS-SD-DMRG(18,χ = 10−6) -75.7836 99.6
CAS-DMRG(χ = 10−6) -75.7849 99.9
CAS-DMRG(M = 4096) -75.7850 100.0

• Similar performance measured along the PES for d ≤ 5.
• Spectroscopic constants agree with FCIQMC data up to 3 digits.



Rigorous mathematical analysis of the error dependence

Friesecke, Barcza, Ö.L. (2022)

N-electron Hilbert space for the DMRG-RAS method:

H(ℓ, k) = HCAS(ℓ)
⊕

HRAS(L− ℓ, k)

E 0(ℓ, k) = min
Ψ∈H(ℓ,k) : ⟨Ψ,Ψ⟩=1

⟨Ψ, HΨ⟩,

partitioning of the full Hamiltonian into a reference Hamiltonian
associated with the CAS energy and a remainder:

H = H0 + H ′ with

H0 = PHP + (E0 +∆)Q

H ′ = H − PHP − (E0 +∆)Q

where P is the projector of H onto the CAS Hilbert space HCAS ,
Q = I − P is the projector onto the RAS Hilbert space, E0 is the CAS
ground state energy, i.e.

E0 = E 0
CAS(ℓ),

and ∆ > 0 is a parameter to be chosen later.



Method Ground state energy
i-FCIQMC-RDME -13482.17495(4)
i-FCIQMC-PT2 -13482.17845(40)
sHCI-VAR -13482.16043
sHCI-PT2 -13482.17338
DMRG -13482.17681
DMRG(D=8192) -13482.1718
DMRG(D=10240,NO) -13482.1754
RAS(23) -13482.1421
RAS(23,NO) -13482.1544

Non-
extrapolated
ground state
energies ob-
tained by various
methods for
the FeMoco
in CAS(54,54)
orbital space.
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(a) Result of the DMRG-
RAS-X for the FeMoco
for the model space taken
from Ref. Reiher(2007).

(b) The same but for the
natural orbital basis.

Produced on CPU-GPU
for less than one day
Friesecke, Barcza, ÖL (2023)



CPU only limit (for CAS(113,76) dimH = 2.88× 1036)
A. Menczer, ÖL (2023)

▶ Novel algorithmic (producer-consumer) model for parallelization.
▶ Novel gap-free, sequential write and read operations, no allocations

and deallocations in the traditional sense.
▶ Strided batched type chained matrix multiplications without sum

reduction at the end.
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(113,76), Maze-R + MKL seq.

(54,54), Maze-R + MKL seq.

(18,18), Maze-Runner + MKL seq.

(18,18), OpenMP + MKL seq.

(18,18), MKL Threaded



CPU-multiGPU
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Intel(R) Xeon(R) Gold 5318Y CPU @ 2.10GHz

+ 8 x NVIDIA A100-PCIE-40GB
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Performance measured in TFLOPS for the F2 molecule, corresponding to
CAS(18,18) as a function of the number of GPU devices for various fixed
DMRG bond dimension values. Calculations have been performed on a
dual Intel(R) Xeon(R) Gold 5318Y CPU system with 2x24 physical cores
running at 2.1 GHz compiled with eight NVIDIA A100-PCIE-40GB GPU
units. The inset shows the scaling of the performance with respect to the
estimated theoretical maximum, Pmax as an inverse of the DMRG bond
dimension for eight GPU devices.



Boosting effective performance via Wigner-Eckhart theorem

▶ Large-scale tensor operations substituted with multi-million
independent vector and matrix operations

▶ The matrices and tensors are decomposed into smaller components
(sectors) based on quantum numbers

▶ Non-Abelian symmetries in HPC framework is a highly non-trivial
task as it requires a more delicate mathematical framework based on
Wigner-Eckhart theorem leading to correction factors:

C̃ =
√

(2j ′1 + 1)(2j ′2 + 1)(2j + 1)(2k + 1)×

W9j(j1, j2, j , k1, k2, k , j
′
1, j

′
2, j

′)
(1)

where
W9j(j1, j2, j , k1, k2, k , j

′
1, j

′
2, j

′) =
xmax∑

x=xmin

(−1)2x(2x + 1) ·W6j(j1, j2, j , k , j
′, x)×

W6j(k1, k2, k , j2, x , j
′
2) ·W6j(j

′
1, j

′
2, j

′, x , j1, k1),

(2)

▶ Wigner-9j and Wigner-6j tensors



Boosting the effective performance via non-Abelian symmetries
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: CAS(18,18)

U(1)

SU(2)
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eff

SU(2) new

U(1)
eff

 new

FP64

FP64+TCU

A. Menczer, Ö.L (unpublished, 2023), similar results for FeMoco(113,76)

• New mathematical model for parallelization → felxibe scaling

• We reached 108 TFLOPS > 76 TFLOPS of the FP64 limit of NVIDIA
→ utilization of highly specialized tensor core units (TCU)

• Estimated effective U(1) performance is about 250-500 TFLOPS.



Dramatic reduction is scaling exponents: D3 → D0.98

▶ New mathematical model for parallelization

▶ Computational burden of parallelization is marginal and evenly
distributed among workers

▶ An adaptive buffering technique is used to dynamically match the
level of data abstraction

▶ The non-Abelian symmetry related tensor algebra based on
Wigner-Eckhart theorem is fully detached from the conventional
tensor network layer
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System CAS γ1 γ2
F2 (18,18) 1.11 3.10
N2 (14,28) 0.96 3.3
FeMoco (54,54) 0.98 2.97
FeMoco (113,76) 1.01 -

Table: Fitted exponents for the eight
GPU accelerated diagonalization step.



Conclusion

▶ Tensor topologies together with proper basis representations are
important for efficient data sparse representaion of the wavefunction

▶ DMRG-RAS is variational, free of uncontrolled method errors and
has the potential to outperfom conventional methods for strongly
correlated molecules

▶ DMRG-RAS-X can provide the ”missing digit”

▶ Our new mathematical model for massive parallelization via MPI
and NVIDIA-DGX → multiNode-multiGPU exascale computation

▶ Current work: utilization of NVIDIA interlinks for further speedup

▶ We hope to offer: simulation of realistic material properties
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