NeuroAl: How to harness Artificial Intelligence Research for understanding the brain

GERGŐ ORBÁN

computational systems neuroscience lab Dept Computational Sciences Wigner Research Center for Physics

Reading the neural code

"az idegtudomány James Webb teleszkópja"

0.1 second source: Allen Brain Observatory

-7,

Data-driven approaches

http://golab.wigner.mta.hu/

Gergő Orbán –

20 September 2020 3

Hainal et al (2023) Nature Communications

Data driven approaches 1,000,000,000,000,000,000 1.1.1 2.40 a na seneral de la companya de la co Na companya de la comp

n na ser en den er en ser e La ser en ser La ser en se

an ya dan kutu kutu ya sa sa sa

ւ ալիչ նյու

1987 - 1987 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967 - 1967

ມມຕິຍານ

n - ang ang ang pagtabatan pagsabat

a de la contra de la

Hajnal et al (2023) Nature Communications

Gergő Orbán –

Data driven approaches 1.1.1

Hajnal et al (2023) Nature Communications

100000-0000-000

a de la calle de **Ca**lle a c

135

3000

time [ms]

201

audio

20 0.44

201

0.36

5kHz 10kHz

3000

3000

time [ms]

visual

cell a firing rate [Hz]

[Hz]

cell b firing rate [

cell c n rate [Hz]

cell d

201

Hajnal et al (2023) Nature Communications

20 September 2020 4

Adaptation-based approaches deep **discriminative** models

Adaptation-based approaches deep **discriminative** models

Adaptation-based approaches deep **discriminative** models

high-level inference p(species | image)

Meszéna et al (2022) NeurIPS Csikor et al, in prep 20 September 2020 6

http://golab.wigner.mta.hu/

http://golab.wigner.mta.hu/

high-level inference p(species | image)

mid-level inference
p(posture | image)

low-level inference p(compositional features | image)

high-level inference p(species | image)

mid-level inference
p(posture | image)

low-level inference p(compositional features | image)

Meszéna et al (2022) NeurIPS Csikor et al, in prep 20 September 2020 6

high-level inference p(species | image)

mid-level inference p(posture | image)

low-level inference p(compositional features | image)

V1-ff V1-INT

Meszéna et al (2022) NeurIPS Csikor et al, in prep 20 September 2020 6

image

•••••••••••••••••

high-level inference p(species | image)

mid-level inference p(posture | image)

low-level inference p(compositional features | image)

V1-ff

image

V1-INT

Meszéna et al (2022) NeurIPS Csikor et al, in prep 20 September 2020 6

...............

..............

/••••••

Approximate inference

Approximate inference

Approximate inference

Approximate inference

Approximate inference

probability distributions need to be represented

response variability \Leftrightarrow subjective uncertainty

Gergő Orbán –

Orbán et al (2016) Neuron

Approximate inference

probability distributions need to be represented

response variability \Leftrightarrow subjective uncertainty

Gergő Orbán –

Orbán et al (2016) Neuron

http://golab.wigner.mta.hu/

Contextual prior

learning exploits regularities, regularities change from context-to context

Approximate inference

response variability \Leftrightarrow subjective uncertainty

Contextual prior

example

learning exploits regularities, regularities change from context-to context

Bányai et al (2019) PNAS

http://golab.wigner.mta.hu/

Gergő Orbán –

Approximate inference

time (ms)

neural ensembles represent distributions → context-dependent correlations in priors

1 2 3 membrane potential, #1

membrane potential, #2

0 L 0

http://golab.wigner.mta.hu/

Bányai et al (2019) PNAS

rtainty

Approximate inference

membrane potential, #1

response variability \Leftrightarrow subjective uncertainty

Orbán et al (2016) Neuron

Contextual prior

learning exploits regularities, regularities change from context-to context

neural ensembles represent distributions → context-dependent correlations in priors

response correlations \Leftrightarrow correlations in priors

Bányai et al (2019) PNAS

http://golab.wigner.mta.hu/

Gergő Orbán –

Hierarchical inference

Nagy et et al (2020) PLoS CB Meszéna et et al (2022) NeurIPS Csikor et et al, in prep 20 September 2020 8

Nagy et et al (2020) PLoS CB Meszéna et et al (2022) NeurIPS Csikor et et al, in prep 20 September 2020 8

optimally losing information during processing

Nagy et et al (2020) PLoS CB Meszéna et et al (2022) NeurIPS Csikor et et al, in prep 20 September 2020 8

Outlook: A testbed for theories

 $ELBO = \mathbb{E}_{q(V1 \mid \text{image}, V2)}[p(\text{image} \mid V1)] + \text{KL}[q(V2 \mid \text{image}) \mid p(V2)] + \mathbb{E}_{q(V2 \mid \text{image})}[\text{KL}[q(V1 \mid \text{image}, V2) \mid p(V1 \mid V2)]]$

Outlook: A testbed for theories

 $ELBO = \mathbb{E}_{q(V1 \mid \text{image}, V2)}[p(\text{image} \mid V1)] + \text{KL}\left[q(V2 \mid \text{image}) \mid p(V2)\right] + \mathbb{E}_{q(V2 \mid \text{image})}\left[\text{KL}\left[q(V1 \mid \text{image}, V2) \mid p(V1 \mid V2)\right]\right]$

Space Telescope Science Institute Office of Public Outreach

Outlook: A testbed for theories

 $ELBO = \mathbb{E}_{q(V1 \mid \text{image}, V2)}[p(\text{image} \mid V1)] + \text{KL}[q(V2 \mid \text{image}) \mid p(V2)] + \mathbb{E}_{q(V2 \mid \text{image})}[\text{KL}[q(V1 \mid \text{image}, V2) \mid p(V1 \mid V2)]]$

Space Telescope Science Institute Office of Public Outreach

Outlook: A testbed for theories

 $ELBO = \mathbb{E}_{q(V1 \mid \text{image}, V2)}[p(\text{image} \mid V1)] + \text{KL}[q(V2 \mid \text{image}) \mid p(V2)] + \mathbb{E}_{q(V2 \mid \text{image})}[\text{KL}[q(V1 \mid \text{image}, V2) \mid p(V1 \mid V2)]]$

Acknowledgements

- Ferenc Csikor (postdoc)
- Márton Hajnal (PhD student)
- Balázs Meszéna (postdoc)
- Anna Székely (PhD student, BME)
- Zsombor Ungvárszki (PhD student, Lyon)
- Zsombor Szabó (research associate)
- Martos Domonkos (research associate)

Students

- Laci Freund (BME)
- Virág Horváth (ELTE)

istockphoto/Getty images