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p(V1 | image)

 ELBO = !q(V1 | image,V2)[p(image | V1)] + KL [q(V2 | image) | | p(V2)] + !q(V2 | image)[KL [q(V1 | image, V2) | | p(V1 | V2)]]
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“az idegtudomány James Webb teleszkópja”

?

http://people.brandeis.edu/~ogergo
http://people.brandeis.edu/~ogergo


Gergő Orbán – 20 September 2020http://golab.wigner.mta.hu/

Data-driven approaches
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Hajnal et al (2023) Nature Communications

Responses of individual neurons are modulated by input, internal state, output. All of them at once.
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multi-decoder  
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Adaptation-based approaches
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high-level inference 
p(species | image)

p(IT | image)

deep discriminative models
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Though the top hidden layers of these goal-driven models end up 
being predictive of IT cortex data, they were not explicitly tuned to 
do so; indeed, they were not exposed to neural data at all during the 
training procedure. Models thus succeeded in generalizing in two 
ways. First, the models were trained for category recognition using 
real-world photographs of objects in one set of semantic catego-
ries, but were tested against neurons on a completely distinct set of  
synthetically created images containing objects whose semantic cat-
egories were entirely non-overlapping with that used in training. 
Second, the objective function being used to train the network was 

not to fit neural data, but instead the downstream behavioral goal 
(for example, categorization). Model parameters were independently 
selected to optimize categorization performance, and were compared 
with neural data only after all intermediate parameters—for example, 
nonlinear model layers—had already been fixed.

Stated another way, within the class of HCNNs, there appear to be 
comparatively few qualitatively distinct, efficiently learnable solutions 
to high-variation object categorization tasks, and perhaps the brain is 
forced over evolutionary and developmental timescales to pick such a 
solution. To test this hypothesis it would be useful to identify non-HCNN  
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Figure 2 Goal-driven optimization yields neurally predictive models of ventral visual cortex. (a) HCNN models that are better optimized to solve 
object categorization produce hidden layer representations that are better able to predict IT neural response variance. The x axis shows performance 
(balanced accuracy; chance is 50%) of the model output features on a high-variation object categorization task. The y axis shows the median single-
site IT response predictivity of the last hidden layer of the HCNN model, over n = 168 IT sites. Site responses are defined as the mean firing rate 
70–170 ms after image onset. Response predictivity is defined as in Box 2. Each dot corresponds to a distinct HCNN model from a large family of such 
models. Models shown as blue circles were selected by random draws from object categorization performance-optimization; black circles show controls 
and earlier published HCNN models; red squares show the development over time of HCNN models produced during an optimization procedure that 
produces a specific HCNN model33. PLOS09, ref. 15; SIFT, shape-invariant feature transform; HMO, optimized HCNN. (b) Actual neural response 
(black trace) versus model predictions of the last hidden layer of an HCNN model (red trace) for a single IT neural site. The x axis shows 1,600 test 
images, none of which were used to fit the model. Images are sorted first by category identity and then by variation amount, with more drastic image 
transformations toward the right within each category block. The y axis represents the response of the neural site and model prediction for each  
test image. This site demonstrated face selectivity in its responses (see inset images), but predictivity results were similar for other IT sites33.  
(c) Comparison of IT and V4 single-site neural response predictivity for various models. Bar height shows median predictivity, taken over 128 predicted 
units in V4 (left panel) or 168 units in IT (right panel). The last hidden layer of the HCNN model best predicts IT responses, while the second-to-last 
hidden layer best predicts V4 responses. (d) Representational dissimilarity matrices (RDMs) for human IT and HCNN model. Blue color indicates 
low values, where representation treats image pairs as similar; red color indicates high values, where representation treats image pairs as distinct. 
Values range from 0 to 1. (e) RDM similarity, measured with Kendall’s TA, between HCNN model layer features and human V1–V3 (left) or human IT 
(right). Gray horizontal bar represents range of performance of the true model given noise and intersubject variation. Error bars are s.e.m. estimated by 
bootstrap resampling of the stimuli used to compute the RDMs. *P < 0.05, **P < 0.001, ****P < 0.0001 for difference from 0. Panels a–c adapted 
from ref. 33, US National Academy of Sciences; d and e adapted from ref. 35, S.M. Khaligh-Razavi and N. Kriegeskorte.

1600 unseen test image (sorted by category)

Yamins et al (2016) Nat Neurosci

deep discriminative models
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Interpreting the neural code: ML insights

7

Approximate inference
probability distributions need to be represented

Orbán et al (2016) Neuron Bányai et al (2019) PNAS

http://people.brandeis.edu/~ogergo
http://people.brandeis.edu/~ogergo


Gergő Orbán – 20 September 2020http://golab.wigner.mta.hu/

Interpreting the neural code: ML insights

7

Approximate inference

𝗒𝟣

𝗒 𝟤

inference 
in the model

probability distributions need to be represented

Orbán et al (2016) Neuron Bányai et al (2019) PNAS

http://people.brandeis.edu/~ogergo
http://people.brandeis.edu/~ogergo


Gergő Orbán – 20 September 2020http://golab.wigner.mta.hu/

Interpreting the neural code: ML insights

7

Approximate inference

𝗒𝟣

𝗒 𝟤

inference 
in the model

𝖺 𝗇
𝖾𝗎

𝗋𝗈
𝗇

#𝟤
inference 

by neurons

𝖺𝗇𝖾𝗎𝗋𝗈𝗇 #𝟣

probability distributions need to be represented

Orbán et al (2016) Neuron Bányai et al (2019) PNAS

http://people.brandeis.edu/~ogergo
http://people.brandeis.edu/~ogergo


Gergő Orbán – 20 September 2020http://golab.wigner.mta.hu/

Interpreting the neural code: ML insights

7

Approximate inference

𝗒𝟣

𝗒 𝟤

inference 
in the model

𝖺 𝗇
𝖾𝗎

𝗋𝗈
𝗇

#𝟤
inference 

by neurons

𝖺𝗇𝖾𝗎𝗋𝗈𝗇 #𝟣

probability distributions need to be represented

stochastic sampling ⤳ variable membrane potential

Orbán et al (2016) Neuron Bányai et al (2019) PNAS

http://people.brandeis.edu/~ogergo
http://people.brandeis.edu/~ogergo


Gergő Orbán – 20 September 2020http://golab.wigner.mta.hu/

Interpreting the neural code: ML insights

7

Approximate inference

𝗒𝟣

𝗒 𝟤

inference 
in the model

𝖺 𝗇
𝖾𝗎

𝗋𝗈
𝗇

#𝟤
inference 

by neurons

𝖺𝗇𝖾𝗎𝗋𝗈𝗇 #𝟣

TRIAL #2

100 200 3000
time (ms)

z

yny1 y2

x

noise

a

b

r

n

x

y

u

z

100 200 3000
time (ms)

Figure-1 (Orbán)

r dt

u

r

y

u

fir
in

g 
ra

te
 (H

z)

0

20

40

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)
sp

ik
e 

co
un

t

3
1

TRIAL #1

0

2

4

neuron #2
neuron #1

fir
in

g 
ra

te
 (h

z)

0

20

40

0

2

4

sp
ik

e 
co

un
t

2
2

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)

spike count
neuron #1

0 2 4

sp
ik

e 
co

un
t

ne
ur

on
 #

2

0

2

4

...

P (y | x)

TRIAL #1c

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

0 2 4
0

2

4
0 ms

400 ms

0 2 4
0

2

4

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

TRIAL #2

m
em

br
an

e
po

te
nt

ia
l

probability distributions need to be represented

stochastic sampling ⤳ variable membrane potential

Orbán et al (2016) Neuron Bányai et al (2019) PNAS

http://people.brandeis.edu/~ogergo
http://people.brandeis.edu/~ogergo


Gergő Orbán – 20 September 2020http://golab.wigner.mta.hu/

Interpreting the neural code: ML insights

7

Approximate inference

𝗒𝟣

𝗒 𝟤

inference 
in the model

𝖺 𝗇
𝖾𝗎

𝗋𝗈
𝗇

#𝟤
inference 

by neurons

𝖺𝗇𝖾𝗎𝗋𝗈𝗇 #𝟣

TRIAL #2

100 200 3000
time (ms)

z

yny1 y2

x

noise

a

b

r

n

x

y

u

z

100 200 3000
time (ms)

Figure-1 (Orbán)

r dt

u

r

y

u

fir
in

g 
ra

te
 (H

z)

0

20

40

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)
sp

ik
e 

co
un

t

3
1

TRIAL #1

0

2

4

neuron #2
neuron #1

fir
in

g 
ra

te
 (h

z)

0

20

40

0

2

4

sp
ik

e 
co

un
t

2
2

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)

spike count
neuron #1

0 2 4

sp
ik

e 
co

un
t

ne
ur

on
 #

2

0

2

4

...

P (y | x)

TRIAL #1c

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

0 2 4
0

2

4
0 ms

400 ms

0 2 4
0

2

4

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

TRIAL #2

m
em

br
an

e
po

te
nt

ia
l

probability distributions need to be represented

stochastic sampling ⤳ variable membrane potential

Orbán et al (2016) Neuron Bányai et al (2019) PNAS

http://people.brandeis.edu/~ogergo
http://people.brandeis.edu/~ogergo


Gergő Orbán – 20 September 2020http://golab.wigner.mta.hu/

Interpreting the neural code: ML insights

7

Approximate inference

TRIAL #2

100 200 3000
time (ms)

z

yny1 y2

x

noise

a

b

r

n

x

y

u

z

100 200 3000
time (ms)

Figure-1 (Orbán)

r dt

u

r

y

u

fir
in

g 
ra

te
 (H

z)

0

20

40

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)
sp

ik
e 

co
un

t

3
1

TRIAL #1

0

2

4

neuron #2
neuron #1

fir
in

g 
ra

te
 (h

z)

0

20

40

0

2

4

sp
ik

e 
co

un
t

2
2

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)

spike count
neuron #1

0 2 4

sp
ik

e 
co

un
t

ne
ur

on
 #

2

0

2

4

...

P (y | x)

TRIAL #1c

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

0 2 4
0

2

4
0 ms

400 ms

0 2 4
0

2

4

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

TRIAL #2

𝗒𝟣

𝗒 𝟤

inference 
in the model

𝖺 𝗇
𝖾𝗎

𝗋𝗈
𝗇

#𝟤
inference 

by neurons

𝖺𝗇𝖾𝗎𝗋𝗈𝗇 #𝟣

TRIAL #2

100 200 3000
time (ms)

z

yny1 y2

x

noise

a

b

r

n

x

y

u

z

100 200 3000
time (ms)

Figure-1 (Orbán)

r dt

u

r

y

u

fir
in

g 
ra

te
 (H

z)

0

20

40

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)
sp

ik
e 

co
un

t

3
1

TRIAL #1

0

2

4

neuron #2
neuron #1

fir
in

g 
ra

te
 (h

z)

0

20

40

0

2

4

sp
ik

e 
co

un
t

2
2

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)

spike count
neuron #1

0 2 4

sp
ik

e 
co

un
t

ne
ur

on
 #

2

0

2

4

...

P (y | x)

TRIAL #1c

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

0 2 4
0

2

4
0 ms

400 ms

0 2 4
0

2

4

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

TRIAL #2

m
em

br
an

e
po

te
nt

ia
l

probability distributions need to be represented

stochastic sampling ⤳ variable membrane potential

Orbán et al (2016) Neuron Bányai et al (2019) PNAS

http://people.brandeis.edu/~ogergo
http://people.brandeis.edu/~ogergo


Gergő Orbán – 20 September 2020http://golab.wigner.mta.hu/

Interpreting the neural code: ML insights

7

Approximate inference

TRIAL #2

100 200 3000
time (ms)

z

yny1 y2

x

noise

a

b

r

n

x

y

u

z

100 200 3000
time (ms)

Figure-1 (Orbán)

r dt

u

r

y

u

fir
in

g 
ra

te
 (H

z)

0

20

40

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)
sp

ik
e 

co
un

t

3
1

TRIAL #1

0

2

4

neuron #2
neuron #1

fir
in

g 
ra

te
 (h

z)

0

20

40

0

2

4

sp
ik

e 
co

un
t

2
2

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)

spike count
neuron #1

0 2 4

sp
ik

e 
co

un
t

ne
ur

on
 #

2

0

2

4

...

P (y | x)

TRIAL #1c

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

0 2 4
0

2

4
0 ms

400 ms

0 2 4
0

2

4

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

TRIAL #2

𝗒𝟣

𝗒 𝟤

inference 
in the model

𝖺 𝗇
𝖾𝗎

𝗋𝗈
𝗇

#𝟤
inference 

by neurons

𝖺𝗇𝖾𝗎𝗋𝗈𝗇 #𝟣

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

TRIAL #2

100 200 3000
time (ms)

z

yny1 y2

x

noise

a

b

r

n

x

y

u

z

100 200 3000
time (ms)

Figure-1 (Orbán)

r dt

u

r

y

u

fir
in

g 
ra

te
 (H

z)

0

20

40

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)
sp

ik
e 

co
un

t

3
1

TRIAL #1

0

2

4

neuron #2
neuron #1

fir
in

g 
ra

te
 (h

z)

0

20

40

0

2

4

sp
ik

e 
co

un
t

2
2

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)

spike count
neuron #1

0 2 4

sp
ik

e 
co

un
t

ne
ur

on
 #

2

0

2

4

...

P (y | x)

TRIAL #1c

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

0 2 4
0

2

4
0 ms

400 ms

0 2 4
0

2

4

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

TRIAL #2

m
em

br
an

e
po

te
nt

ia
l

probability distributions need to be represented

stochastic sampling ⤳ variable membrane potential

Orbán et al (2016) Neuron Bányai et al (2019) PNAS
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probability distributions need to be represented

stochastic sampling ⤳ variable membrane potential

response variability ⇔ subjective uncertainty
Orbán et al (2016) Neuron Bányai et al (2019) PNAS
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probability distributions need to be represented

stochastic sampling ⤳ variable membrane potential

response variability ⇔ subjective uncertainty
Orbán et al (2016) Neuron Bányai et al (2019) PNAS

learning exploits regularities, regularities change from context-to context

Contextual prior

http://people.brandeis.edu/~ogergo
http://people.brandeis.edu/~ogergo


Gergő Orbán – 20 September 2020http://golab.wigner.mta.hu/

Interpreting the neural code: ML insights

7

Approximate inference

TRIAL #2

100 200 3000
time (ms)

z

yny1 y2

x

noise

a

b

r

n

x

y

u

z

100 200 3000
time (ms)

Figure-1 (Orbán)

r dt

u

r

y

u

fir
in

g 
ra

te
 (H

z)

0

20

40

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)
sp

ik
e 

co
un

t

3
1

TRIAL #1

0

2

4

neuron #2
neuron #1

fir
in

g 
ra

te
 (h

z)

0

20

40

0

2

4

sp
ik

e 
co

un
t

2
2

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)

spike count
neuron #1

0 2 4

sp
ik

e 
co

un
t

ne
ur

on
 #

2

0

2

4

...

P (y | x)

TRIAL #1c

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

0 2 4
0

2

4
0 ms

400 ms

0 2 4
0

2

4

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

TRIAL #2

𝗒𝟣

𝗒 𝟤

inference 
in the model

𝖺 𝗇
𝖾𝗎

𝗋𝗈
𝗇

#𝟤
inference 

by neurons

𝖺𝗇𝖾𝗎𝗋𝗈𝗇 #𝟣

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

membrane potential, #1
0 1 2 3 4

m
em

br
an

e 
po

te
nt

ia
l, 

#2

0

2

4

TRIAL #2

100 200 3000
time (ms)

z

yny1 y2

x

noise

a

b

r

n

x

y

u

z

100 200 3000
time (ms)

Figure-1 (Orbán)

r dt

u

r

y

u

fir
in

g 
ra

te
 (H

z)

0

20

40

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)
sp

ik
e 

co
un

t

3
1

TRIAL #1

0

2

4

neuron #2
neuron #1

fir
in

g 
ra

te
 (h

z)

0

20

40

0

2

4

sp
ik

e 
co

un
t

2
2

m
em

br
an

e
po

te
nt

ia
l (

a.
u.

)

spike count
neuron #1

0 2 4

sp
ik

e 
co

un
t

ne
ur

on
 #

2

0

2

4

...

P (y | x)

TRIAL #1c

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

0 2 4
0

2

4
0 ms

400 ms

0 2 4
0

2

4

membrane potential (a.u.)
neuron #1

m
em

br
an

e 
po

te
nt

ia
l (

a.
u.

)
ne

ur
on

 #
2

TRIAL #2

m
em

br
an

e
po

te
nt

ia
l

LETTERS

Emergence of complex cell properties by learning to
generalize in natural scenes
Yan Karklin1{ & Michael S. Lewicki1{

A fundamental function of the visual system is to encode the build-
ing blocks of natural scenes—edges, textures and shapes—that sub-
serve visual tasks such as object recognition and scene
understanding. Essential to this process is the formation of abstract
representations that generalize from specific instances of visual
input. A common view holds that neurons in the early visual system
signal conjunctions of image features1,2, but how these produce
invariant representations is poorly understood. Here we propose that
to generalize over similar images, higher-level visual neurons encode
statistical variations that characterize local image regions. We pre-
sent a model in which neural activity encodes the probability distri-
bution most consistent with a given image. Trained on natural
images, the model generalizes by learning a compact set of dictionary
elements for image distributions typically encountered in natural
scenes. Model neurons show a diverse range of properties observed
in cortical cells. These results provide a new functional explanation
for nonlinear effects in complex cells3–6 and offer insight into coding
strategies in primary visual cortex (V1) and higher visual areas.

As we scan across a complex natural scene, fixations at multiple
locations (for example, on the trunk of a tree or along its edge)
produce a coherent percept of the underlying structure (the bark
texture or the contour of the edge), even though individual images
collected at the retina are inherently highly variable. Figure 1 illus-
trates the problem our brain solves so effortlessly: perceptually dis-
tinct image regions produce response patterns that are highly
overlapping and cannot be easily distinguished using low-level, linear
representations. What sort of computations are required to achieve
generalization across natural stimuli?

Early visual neurons are typically described as linear feature detec-
tors1,2. Models developed around this idea can accurately capture the
behaviour of neurons from the retina7 to simple cells in the cortex8

but, as the examples in Fig. 1 illustrate, neither individual features nor
linear transformations can reliably discriminate images of one struc-
ture from another. More abstract features are presumably computed
in later stages of the visual system, but our knowledge of processing
by these neurons is limited. In V1, complex cells respond to an edge
over a range of positions1, but classical models of these cells9,10 fail to
explain a number of nonlinear effects, such as surround suppression
and cross-orientation inhibition3–5. More importantly, there is no
functional explanation for the role of these behaviours in the percep-
tion of natural scenes. In higher visual areas such as V2 and V4,
neurons are more invariant to image properties such as position
and scale11–13 and might be encoding shape or texture12,14,15. For these
neurons to generalize effectively, the neural circuitry must generate a
representation that is similar across the wide distribution of images of
a given type (for example, a texture or contour) yet distinct across the
much larger distribution of all other images.

Previous theoretical work has shown that neurons in the primary
visual cortex form an efficient code adapted to the statistics of natural
images16,17, but this says nothing about how neurons generalize across

1Computer Science Department & Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA. {Present address: Center for Neural Science, New
York University, New York, New York, USA (Y.K.); Electrical Engineering and Computer Science Department, Case Western University, Cleveland, Ohio, USA and Wissenschaftskolleg
(Institute for Advanced Study) zu Berlin, Germany (M.S.L.).
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Figure 1 | Statistical patterns distinguish local regions of natural scenes.
a, A natural scene with four distinct regions outlined (image courtesy of
E. Doi). b, The scatter plot shows the joint output of a pair of linear feature
detectors (oriented Gabor filters) for 20 3 20-image patches sampled from
the four regions. The outputs from different regions are highly overlapping,
indicating that linear features provide no means to distinguish between the
regions. c, Each column shows the joint output of a different pair of linear
feature detectors sampled from the regions containing the tree bark or the
tree edge (the first column corresponds to features in b). The correlations in
each panel can be described by a Gaussian distribution and its covariance
(ellipses). The differences in the distributions between the rows reveal
characteristic patterns in correlations, which become even more prominent
as projections onto more features are considered. These patterns can be used
to generalize within regions while still distinguishing among them. As an
example, we highlight two patches in each region, shown by the circle and
triangle in each panel. Although the pairs of images are visibly quite
different, each image is consistent with the distribution of the local image
region. By contrasting the distributions across multiple dimensions, it is
possible to infer image type for single patches, even if the patches have
similar projections along some image features.
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Emergence of complex cell properties by learning to
generalize in natural scenes
Yan Karklin1{ & Michael S. Lewicki1{

A fundamental function of the visual system is to encode the build-
ing blocks of natural scenes—edges, textures and shapes—that sub-
serve visual tasks such as object recognition and scene
understanding. Essential to this process is the formation of abstract
representations that generalize from specific instances of visual
input. A common view holds that neurons in the early visual system
signal conjunctions of image features1,2, but how these produce
invariant representations is poorly understood. Here we propose that
to generalize over similar images, higher-level visual neurons encode
statistical variations that characterize local image regions. We pre-
sent a model in which neural activity encodes the probability distri-
bution most consistent with a given image. Trained on natural
images, the model generalizes by learning a compact set of dictionary
elements for image distributions typically encountered in natural
scenes. Model neurons show a diverse range of properties observed
in cortical cells. These results provide a new functional explanation
for nonlinear effects in complex cells3–6 and offer insight into coding
strategies in primary visual cortex (V1) and higher visual areas.

As we scan across a complex natural scene, fixations at multiple
locations (for example, on the trunk of a tree or along its edge)
produce a coherent percept of the underlying structure (the bark
texture or the contour of the edge), even though individual images
collected at the retina are inherently highly variable. Figure 1 illus-
trates the problem our brain solves so effortlessly: perceptually dis-
tinct image regions produce response patterns that are highly
overlapping and cannot be easily distinguished using low-level, linear
representations. What sort of computations are required to achieve
generalization across natural stimuli?

Early visual neurons are typically described as linear feature detec-
tors1,2. Models developed around this idea can accurately capture the
behaviour of neurons from the retina7 to simple cells in the cortex8

but, as the examples in Fig. 1 illustrate, neither individual features nor
linear transformations can reliably discriminate images of one struc-
ture from another. More abstract features are presumably computed
in later stages of the visual system, but our knowledge of processing
by these neurons is limited. In V1, complex cells respond to an edge
over a range of positions1, but classical models of these cells9,10 fail to
explain a number of nonlinear effects, such as surround suppression
and cross-orientation inhibition3–5. More importantly, there is no
functional explanation for the role of these behaviours in the percep-
tion of natural scenes. In higher visual areas such as V2 and V4,
neurons are more invariant to image properties such as position
and scale11–13 and might be encoding shape or texture12,14,15. For these
neurons to generalize effectively, the neural circuitry must generate a
representation that is similar across the wide distribution of images of
a given type (for example, a texture or contour) yet distinct across the
much larger distribution of all other images.

Previous theoretical work has shown that neurons in the primary
visual cortex form an efficient code adapted to the statistics of natural
images16,17, but this says nothing about how neurons generalize across

1Computer Science Department & Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA. {Present address: Center for Neural Science, New
York University, New York, New York, USA (Y.K.); Electrical Engineering and Computer Science Department, Case Western University, Cleveland, Ohio, USA and Wissenschaftskolleg
(Institute for Advanced Study) zu Berlin, Germany (M.S.L.).
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Figure 1 | Statistical patterns distinguish local regions of natural scenes.
a, A natural scene with four distinct regions outlined (image courtesy of
E. Doi). b, The scatter plot shows the joint output of a pair of linear feature
detectors (oriented Gabor filters) for 20 3 20-image patches sampled from
the four regions. The outputs from different regions are highly overlapping,
indicating that linear features provide no means to distinguish between the
regions. c, Each column shows the joint output of a different pair of linear
feature detectors sampled from the regions containing the tree bark or the
tree edge (the first column corresponds to features in b). The correlations in
each panel can be described by a Gaussian distribution and its covariance
(ellipses). The differences in the distributions between the rows reveal
characteristic patterns in correlations, which become even more prominent
as projections onto more features are considered. These patterns can be used
to generalize within regions while still distinguishing among them. As an
example, we highlight two patches in each region, shown by the circle and
triangle in each panel. Although the pairs of images are visibly quite
different, each image is consistent with the distribution of the local image
region. By contrasting the distributions across multiple dimensions, it is
possible to infer image type for single patches, even if the patches have
similar projections along some image features.
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Emergence of complex cell properties by learning to
generalize in natural scenes
Yan Karklin1{ & Michael S. Lewicki1{

A fundamental function of the visual system is to encode the build-
ing blocks of natural scenes—edges, textures and shapes—that sub-
serve visual tasks such as object recognition and scene
understanding. Essential to this process is the formation of abstract
representations that generalize from specific instances of visual
input. A common view holds that neurons in the early visual system
signal conjunctions of image features1,2, but how these produce
invariant representations is poorly understood. Here we propose that
to generalize over similar images, higher-level visual neurons encode
statistical variations that characterize local image regions. We pre-
sent a model in which neural activity encodes the probability distri-
bution most consistent with a given image. Trained on natural
images, the model generalizes by learning a compact set of dictionary
elements for image distributions typically encountered in natural
scenes. Model neurons show a diverse range of properties observed
in cortical cells. These results provide a new functional explanation
for nonlinear effects in complex cells3–6 and offer insight into coding
strategies in primary visual cortex (V1) and higher visual areas.

As we scan across a complex natural scene, fixations at multiple
locations (for example, on the trunk of a tree or along its edge)
produce a coherent percept of the underlying structure (the bark
texture or the contour of the edge), even though individual images
collected at the retina are inherently highly variable. Figure 1 illus-
trates the problem our brain solves so effortlessly: perceptually dis-
tinct image regions produce response patterns that are highly
overlapping and cannot be easily distinguished using low-level, linear
representations. What sort of computations are required to achieve
generalization across natural stimuli?

Early visual neurons are typically described as linear feature detec-
tors1,2. Models developed around this idea can accurately capture the
behaviour of neurons from the retina7 to simple cells in the cortex8

but, as the examples in Fig. 1 illustrate, neither individual features nor
linear transformations can reliably discriminate images of one struc-
ture from another. More abstract features are presumably computed
in later stages of the visual system, but our knowledge of processing
by these neurons is limited. In V1, complex cells respond to an edge
over a range of positions1, but classical models of these cells9,10 fail to
explain a number of nonlinear effects, such as surround suppression
and cross-orientation inhibition3–5. More importantly, there is no
functional explanation for the role of these behaviours in the percep-
tion of natural scenes. In higher visual areas such as V2 and V4,
neurons are more invariant to image properties such as position
and scale11–13 and might be encoding shape or texture12,14,15. For these
neurons to generalize effectively, the neural circuitry must generate a
representation that is similar across the wide distribution of images of
a given type (for example, a texture or contour) yet distinct across the
much larger distribution of all other images.

Previous theoretical work has shown that neurons in the primary
visual cortex form an efficient code adapted to the statistics of natural
images16,17, but this says nothing about how neurons generalize across

1Computer Science Department & Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA. {Present address: Center for Neural Science, New
York University, New York, New York, USA (Y.K.); Electrical Engineering and Computer Science Department, Case Western University, Cleveland, Ohio, USA and Wissenschaftskolleg
(Institute for Advanced Study) zu Berlin, Germany (M.S.L.).
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Figure 1 | Statistical patterns distinguish local regions of natural scenes.
a, A natural scene with four distinct regions outlined (image courtesy of
E. Doi). b, The scatter plot shows the joint output of a pair of linear feature
detectors (oriented Gabor filters) for 20 3 20-image patches sampled from
the four regions. The outputs from different regions are highly overlapping,
indicating that linear features provide no means to distinguish between the
regions. c, Each column shows the joint output of a different pair of linear
feature detectors sampled from the regions containing the tree bark or the
tree edge (the first column corresponds to features in b). The correlations in
each panel can be described by a Gaussian distribution and its covariance
(ellipses). The differences in the distributions between the rows reveal
characteristic patterns in correlations, which become even more prominent
as projections onto more features are considered. These patterns can be used
to generalize within regions while still distinguishing among them. As an
example, we highlight two patches in each region, shown by the circle and
triangle in each panel. Although the pairs of images are visibly quite
different, each image is consistent with the distribution of the local image
region. By contrasting the distributions across multiple dimensions, it is
possible to infer image type for single patches, even if the patches have
similar projections along some image features.
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purely on knowledge of environmental statistics. Starting from the point corresponding 379

to verbatim compression, the memory trace becomes increasingly gist-like, until a point 380

where even a very high level gist of the episode is lost. In this way, the trade-off 381

between rate and distortion results in the emergence of a continuum between gist and 382

verbatim representations. 383
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Fig 4. Rate distortion trade-off in memory for sketch drawings. A:
Illustration of stimulus reconstructions as changes in � result in different points on the
rate distortion curve for the sketch-VAE model. Inset image is used as input and is
reconstructed with various levels of compression. Optimal forgetting implies moving
along the curve in the direction of increasing � corresponding to increasingly
prototypical reconstructions of the original drawing. B: Proportion of recalled sketches
judged to show category specific distortions in humans due to the context presented
during learning at different delays between stimulus presentation and recall. Distortions
were evaluated by two of the experimenters and one judge naive to the purpose of the
experiment. Figure reproduced from [38]. C: Proportion of sketches reconstructed by
the model showing category specific distortion as a function of increasing compression.
Quantitative changes in visual features are assessed, similar to Fig. 3D.

Temporal reduction of memory resources 384

Decreased memory resources can result from various experimental manipulations. One 385

prominent cause can be the reduction of memory resources allocated to a memory trace 386

as time increases. As a consequence, a straightforward way of inducing compression at 387

decreasing rates is introducing an increasing delay between presentation of the stimulus 388

and recall or recognition. The effect of retention interval has been studied both in the 389

recall of hand-drawn sketches and even more extensively in the DRM literature, 390

allowing us to contrast it with our model’s predictions on targeting various points of the 391

rate distortion trade-off. 392

In order to model the effect of delay, we have optimised models for increasing levels 393

of compression by training them with increasingly large �s. Since stronger compression 394
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.

Ziemba et al. PNAS | Published online May 12, 2016 | E3141

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

US

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ap
ril

 1
9,

 2
02

0 

texture families

te
xt

ur
e 

sa
m

pl
es

V1 classification performance 

V2
 c

las
sifi

ca
tio

n 
pe

rfo
rm

an
ce

purely on knowledge of environmental statistics. Starting from the point corresponding 379

to verbatim compression, the memory trace becomes increasingly gist-like, until a point 380

where even a very high level gist of the episode is lost. In this way, the trade-off 381

between rate and distortion results in the emergence of a continuum between gist and 382

verbatim representations. 383
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Fig 4. Rate distortion trade-off in memory for sketch drawings. A:
Illustration of stimulus reconstructions as changes in � result in different points on the
rate distortion curve for the sketch-VAE model. Inset image is used as input and is
reconstructed with various levels of compression. Optimal forgetting implies moving
along the curve in the direction of increasing � corresponding to increasingly
prototypical reconstructions of the original drawing. B: Proportion of recalled sketches
judged to show category specific distortions in humans due to the context presented
during learning at different delays between stimulus presentation and recall. Distortions
were evaluated by two of the experimenters and one judge naive to the purpose of the
experiment. Figure reproduced from [38]. C: Proportion of sketches reconstructed by
the model showing category specific distortion as a function of increasing compression.
Quantitative changes in visual features are assessed, similar to Fig. 3D.

Temporal reduction of memory resources 384

Decreased memory resources can result from various experimental manipulations. One 385

prominent cause can be the reduction of memory resources allocated to a memory trace 386

as time increases. As a consequence, a straightforward way of inducing compression at 387

decreasing rates is introducing an increasing delay between presentation of the stimulus 388

and recall or recognition. The effect of retention interval has been studied both in the 389

recall of hand-drawn sketches and even more extensively in the DRM literature, 390

allowing us to contrast it with our model’s predictions on targeting various points of the 391

rate distortion trade-off. 392

In order to model the effect of delay, we have optimised models for increasing levels 393

of compression by training them with increasingly large �s. Since stronger compression 394
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and is responsible for these perceptual phenomena, then the
responses of populations of V2 neurons to statistically matched
stimuli should reveal a particular form of tolerance. Specifically,
populations of neurons in V2 should respond similarly to stimuli
that are statistically matched, despite variation in local image
detail. This kind of tolerance would complement previously
reported tolerances to geometric image transformations, such as
translation or rotation, found at higher levels of visual cortex (8–10).
We studied this tolerance to statistical resampling by analyzing

responses of a collection of V1 and V2 neurons to images of
synthetic texture, generated to match the statistics of different
texture “families.” V2 responses across families of statistically
matched stimuli were more homogeneous than V1 responses,
reflecting an increased tolerance that was only partly explained
by the larger size of their receptive fields. Using a neural pop-
ulation decoder, we found V2 was better than V1 at discrimi-
nating between-family images matched for different statistics and
worse at discriminating within-family images matched for the
same statistics, a pattern of performance that broadly resembles
human perceptual experience (23, 25).

Results
Generation of Naturalistic Texture Stimuli. We studied the pop-
ulation representation of visual information in areas V1 and V2
using naturalistic images generated from a texture model defined
in terms of joint and marginal statistics of a simulated population
of V1 simple and complex cells (23). These statistics include
local correlations between the output of pairs of model neurons
that differ in preferred spatial frequency, position, and/or ori-
entation. Some of these correlations are second-order statistics
that capture the amount of energy at specific orientations and
spatial frequencies; we refer to these statistics as “spectral.” Other
correlations are of higher order, capturing naturalistic features
beyond the power spectrum. We first computed this set of statistics
for a grayscale photograph of a natural texture, and then generated
synthetic texture images by starting with an image of Gaussian
white noise and iteratively adjusting the pixels until the image had
the same statistics (computed over the entire extent of the syn-
thesized image) as the original photograph (23).
We refer to a set of images with identical statistics as a texture

“family” (Fig. 1A, columns). Within a family, different white
noise seeds yield different images, and we refer to all such images
as “samples” from that family (Fig. 1A, rows). By construction,
samples are identical in their model statistics, but differ in the
location and arrangement of features within the image. Previous
work (23, 24) and visual inspection of Fig. 1A reveals that samples
from a given family are similar in appearance to each other, and to
the original photograph from which their statistics were drawn.
We recently showed that these stimuli produce enhanced responses
in V2 neurons, compared with images that are matched only for
their Fourier power spectra (19). This enhancement was not found
in V1 neurons.
For the present study, we chose 15 original natural photographs

to define 15 different texture families. These images were per-
ceptually distinct, and human sensitivity to their higher order
statistics spanned a range that was similar to the range found over
a much larger set of natural photographs (19). We synthesized 15
different samples from each family, yielding 225 unique images.

Single Neuron Responses to Naturalistic Texture Stimuli.We recorded
the spiking activity of 102 V1 and 103 V2 neurons in 13 anesthetized
macaque monkeys to these texture stimuli. We presented the stimuli
within a 4° aperture centered on the receptive field of each recorded
neuron. Each of the 225 different stimuli appeared 20 times in
pseudorandom order and was displayed for 100 ms, separated
by 100 ms of uniform gray at the mean luminance. The same
stimulus sequence was presented to each neuron. We have pre-
viously published a comparison of these responses to the responses

obtained from spectrally matched (phase-scrambled) noise stimuli
(19). Here, we present a new analysis of these data, which seeks to
determine the relative selectivity and tolerance of V1 and V2
neurons for the different texture families and the image samples
drawn from those families, respectively.
Texture stimuli elicited selective responses in most V1 and V2

neurons (Fig. 1 B and C). Neurons in both V1 and V2 displayed a
characteristic firing rate for each image, with some variability
across presentations. For most texture families, firing rates of V1
neurons were highly variable across the samples (Fig. 1B). In
contrast, V2 neurons exhibited similar firing rates across samples,
as well as more consistent differences in average firing rate across
families (Fig. 1C); that is, V2 neurons appeared to be more tol-
erant to the variations in image detail that occur across samples
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Fig. 1. Examples of texture stimuli and responses of V1 and V2 neurons.
(A) Naturalistic textures. Each column contains three different samples from
each of four texture families. The samples within each family are statistically
matched, but differ in detail because the synthesis procedure is initialized
with independent images of Gaussian white noise. (B) Raster plots and mean
firing rates for an example V1 neuron, responding to textures in A. The gray
bar indicates presentation of the stimulus (first 100 ms), and each row of black
ticks represents the timing of spikes on a single presentation of the stimulus.
The thickness of the lines indicates SEM across 20 repetitions of each of the
images in A. (C) Same as in B, for an example V2 neuron.
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purely on knowledge of environmental statistics. Starting from the point corresponding 379

to verbatim compression, the memory trace becomes increasingly gist-like, until a point 380

where even a very high level gist of the episode is lost. In this way, the trade-off 381

between rate and distortion results in the emergence of a continuum between gist and 382

verbatim representations. 383
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Fig 4. Rate distortion trade-off in memory for sketch drawings. A:
Illustration of stimulus reconstructions as changes in � result in different points on the
rate distortion curve for the sketch-VAE model. Inset image is used as input and is
reconstructed with various levels of compression. Optimal forgetting implies moving
along the curve in the direction of increasing � corresponding to increasingly
prototypical reconstructions of the original drawing. B: Proportion of recalled sketches
judged to show category specific distortions in humans due to the context presented
during learning at different delays between stimulus presentation and recall. Distortions
were evaluated by two of the experimenters and one judge naive to the purpose of the
experiment. Figure reproduced from [38]. C: Proportion of sketches reconstructed by
the model showing category specific distortion as a function of increasing compression.
Quantitative changes in visual features are assessed, similar to Fig. 3D.

Temporal reduction of memory resources 384

Decreased memory resources can result from various experimental manipulations. One 385

prominent cause can be the reduction of memory resources allocated to a memory trace 386

as time increases. As a consequence, a straightforward way of inducing compression at 387

decreasing rates is introducing an increasing delay between presentation of the stimulus 388

and recall or recognition. The effect of retention interval has been studied both in the 389

recall of hand-drawn sketches and even more extensively in the DRM literature, 390

allowing us to contrast it with our model’s predictions on targeting various points of the 391
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Figure 12. Recording rig. (A), Stereomicroscope used to visualize the insertion site. The eyepieces have been replaced 
with cameras, to enable remote viewing while the rig is enclosed. (B), Visual stimulus monitor. (C), Maintenance stand 
used to repair and replace probes, headstages, manipulators, and ground wires. (D), Behavior stage. (E), Eyetracking 
camera. (F), Manipulators used to align probes with visual areas. (G), Protective cone, to prevent the mouse’s tail from 
contacting the probes. (H), Running wheel. (I), IR dichroic, to reflect the mouse’s eye without obscuring the view of the 
stimulus monitor. 

Probe Alignment 

The tip of each probe was aligned to its associated opening in the insertion window using a coordinate transformation 
obtained via a prior calibration procedure. The XY locations of the visual area retinotopic centers were supplied by the 
Workflow Sequencing Engine (WSE), and these values were translated into XYZ coordinates for each 3-axis manipulator 
using a custom Python script. The operator then moved each probe into the desired location prior to placing the mouse 
on the rig. 

Application of CM-DiI  

Precise localization of Neuropixels probes in the target brain areas cannot be made by electrolytic lesions (current cannot 
be delivered through the recording sites) or DAPI/Nissl staining of tissue (the probes are too thin to show visible tracks). 
Instead, CM-DiI (1 mM in ethanol; ThermoFisher Product #V22888) was used because its fluorescence is maintained 
after brain clearing, and it has a limited diffusion radius. The probes were coated before each recording by immersing 
them one by one into a well filled with dye (Figure 13). A single dip is sufficient to clearly see the probe tracks in the ex 
vivo imaging step. At this stage, the probes were checked for collisions. If adjacent probes collide with one another during 
insertion into the CM-DiI well, they will not be lowered to the maximum depth during the experiment. 
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