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Pycnonuclear reactions in compact stars

[1] A.G.W.Cameron, Pycnonuclear reactions and nova explosions, Astr. J. 130, 916 (1959).

[2] E.E.Salpeter, H.M.VanHorn, Nuclear reaction rates at high densities, Astr. J. 155, 183 (1969).

[3] P. Haensel, et al., Astron. Astr. 229, 117 (1990); 404, L33 (2003).

The phenomenon can be interpreted as overlap of the wave function of

neighboring ions, and is proportional to the overlapping amplitude.

Explanation: In stars, thermal energy of reacting nuclei overcomes the

Coulomb repulsion between them because of close distance between

nuclei (due to sufficiently high density of stellar matter). In result, fusion

can proceed. This is pycnonuclear fusion (reaction) [1]. It can be at zero

temperatures (very low energies).
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Pycnonuclear fusion (Greek: πυκνός (pyknós) – 'dense, compact') is a

type of nuclear fusion reaction which occurs due to zero-point

oscillations of nuclei around their equilibrium point in crystal lattice sites.

The term "pycnonuclear" was coined by A.G.W. Cameron in 1959 [1],

but research showing the possibility of nuclear fusion in extremely dense

and cold compositions was published by W. A. Wildhack in 1940 [2].



Scheme of reactions in neutron stars

[1] A.V. Afanasjev, et al., Report, Univ. of Norte-Dame, USA.

[2] A.Yu. Potekhin, Physics – Uspekhi 53 (12) 1279, (2010).
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[4] M.Beard, A.V.Afanasjev, et al., At. Dat. Nucl. Dat. Tabl. 96, 541-566 (2010).

[5] A.V.Afanasjev, M.Beard, et al., Phys. Rev. C 85, 054615 (2012).

Reactions of neutronization and pycnonuclear fusion can lead to the

creation of absolutely stable environments in superdense substances.

Astrophysical S-factors are estimated for 946 thermonuclear reactions for

isitopes C, O, Ne and Mg for energies 2 - 30 MeV [4]. Large database of

S-factors [5] is formed for isotopes Be, B, C, N, O, F, Ne, Na, Mg, Si

(5000 non-resonant thermo-reactions).
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Pycnonuclear burning occurs in dense and cold cores of white dwarfs [2]

and in crusts of accreting neutron stars [3].



Approaches to study fusion in stars

Fusion in nuclear reactions in stars is 

studied on the basis of solution of 

Schrodinger equation with potential:
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 Cross-section of fusion reaction:

 Penetrability in WKB-approximation:
 WKB-approximation is not applied for 

energies of pycnonuclear reactions,

 Internal processes in nuclear part of 

potential were not studied (ignored).

Restrictions:

 Tests of QM was not used.



Methodology
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Quantum mechanics 

with high precision and tests for 
astrophysical tasks



 Approach on step-by-step:
 Continuity condition at x = 0:
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tunneling:
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Method: 1D tunneling (1)
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 Schrodinger 

equation:

One can understand idea of method the most clearly in the simplest

case – analyzing wave, propagating above rectangular barrier.
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 Calculation of coefficients:

 Amplitudes:
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 Wave function:
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Method: Arbitrary number of barriers
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 Penetrability,

reflection: 10

Calculation of penetrability for arbitrary number of barriers is

essentially more complicated, it has been solved.



 Test for method MR

 (it is absent in WKB-calc.):

 Penetrability in WKB-

approximation:
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Cross-section of capture

Here, E is kinetic energy of relative motion of two nuclei in lab. frame, E1 is kinetic energy

of relative motion of two nuclei in the center-of-mass frame (we use E = E1), m is reduced

mass of two nuclei, Pl is probability of fusion of two nuclei, Tl is penetrability of barrier.
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Cross-section of -capture: method MIR & WKB

Fig.2. Capture cross-sections of -particle by nucleus 44Ca,

obtained by method MIR (lines 2-7, 9-10) and WKB-

approach (line 8). Line 10 is obtained at inclusion of

probabilities of fusion, lines 2-9 are without fusion prob. [1].
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Black circles 1 is experimental data, dashed blue

line 2 is cross-section at lmax=0, short dashed red

line 3 is cross-section at lmax=1, short dash-dotted

purple line 4 is cross-section at lmax=5, dash-

double dotted orange line 5 is cross-section at

lmax=10, dashed dark blue line 6 is cross-section

at lmax=12, dash-dotted green line 7 is cross-

section at lmax=15, solid brown line 8 is cross-

section at lmax=20, dashed dark yellow line 9 is

renormalized cross-section at lmax=17, solid blue

line 10 is cross-section at lmax=17.
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Here, E is kinetic energy of -particle in lab.

frame, E1 is kinetic energy of relative motion of

-particle and nucleus, m is reduced mass of -

particle and nucleus, Pl is probability of fusion

of -particle and nucleus, Tl is penetrability of

barrier.

 Test of method: .1 MIRMIR RT
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Conclusion: Method MIR with included probabilities of

fusion (line 10) is in higher agreement with experimental

data, than WKB-approach without fusion (line 8).
[1] Maydanyuk S. P., Zhang P.-M., et al. 
Nucl. Phys. A940, 89-118 (2015). 



Accuracy of MIR method in capture task
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Formula for probability of fusion

Fig.7. Probabilities of fusion (a) calculated

by formulas above and cross-sections (b) for

capture of -particles by 40Ca, 44Ca, 46Ca,

obtained by method MIR [1].

[1] Maydanyuk S. P., Zhang P.-M., Belchikov S. V. 
Nucl. Phys. A. - 2015. - Vol. 940. - P. 89-118. 
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Using fitting procedure, we found

probabilities of fusion and described

them as
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Example
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Example for study:

pycnonuclear reaction 12C + 12C



Propagation by steps:

 Continuity of wave function at r = R1 :
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Capture via simple barrier (1)
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Schrodinger equation (L=0):
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 3 step:

From continuity of wave function:

Capture via simple barrier (2)
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Tests:

Capture via simple barrier (3)
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Direct QM.

Summation of amplitudes:

Potential and resonant scattering:
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Capture via simple barrier (4)

1. S.P.Maydanyuk, P.M.Zhang, L.P.Zou, Phys.
Rev. C96, 014602 (2017).
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Probability of existence of compound nucleus [1]:

• Exact analytical solution of

Gamow’s idea;

• Appearance of new factor Ploc

• Modern half-lives in decay tasks

are calculated without this factor

Half-life of decay:

G – width of decay;

F1 – factor of oscillating behavior;

P – spectroscopic factor.
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New quasi-bound states in scattering

Fig.3. Maximums are clearly visible.

These are states of the most probable

existence of compound nucleus. We

called them as quasi-bound states in

pycnonuclear reactions.
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Energy levels of zero-point vibrations (1)

Determination of energy levels:

Using method MR, energy levels are 

calculated, where modulus of WF is 

minimal or maximal at point R0 .
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(harmonic oscillator):



Condition for determination of states:
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Idea of determination of levels: Using method MR, energy levels are 

determined, where condition of amplitude AR at point R0 is fulfilled.
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No. Energy, MeV Amplitude AR, Re Amplitude AR , Im

1 0.569699398797595 0.933197319275621 -0.359364387908423

2 0.574108216432866 -0.929937621506901 0.367717310044127

3 0.580280561122244 0.999976682784241 -0.006828900923611

4 0.589979959919840 -0.999804559327251 0.019769753373290

5 0.603206412825651 0.987566383351778 -0.157202539653435

6 0.619078156312625 -0.987872204000573 0.155269148780593

7 0.637595190380762 0.999675512392435 -0.025472925291808

8 0.661402805611222 -0.997827712405446 0.065877586140615

9 0.690501002004008 0.999520247643956 -0.030972157654334

10 0.729298597194389 -0.999921682875423 0.012515115484128

11 0.781322645290581 0.999300653371264 -0.037392568402883

12 0.850100200400802 -0.999977543965837 0.006701609064401

13 0.954148296593186 0.999861191695802 -0.016661252673514

.101 1422  RT AAError in calculation of amplitudes:

.589.0)'(

0 MeVE dovichZel 

Energy levels of zero-point vibrations (3)
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Systematics
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Calculations for isotopes of Carbon:
10C, 12C, 14C, 16C, 18C, 20C, 22C, 24C 
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Quantum mechanical study on 

the basis of solution of 

Schrodinger equation with 

potential:
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New quasi-bound states for fusion
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New quasi-bound energies for fusion
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No. 10C + 10C 12C + 12C 14C + 14C 16C + 16C

1 0.63471 4.88176 9.0621 7.2705

2 15.3326 11.4509 16.5270 13.8396

3 26.3807 20.4088 25.7835 21.9018

Table 2. Indication for synthesis. Energies for ground quasibound states only for

isotopes 10C, 12C, 24C (marked data) are smaller than barrier maximums. That means

for such energies bound system is formed, and for its decay through tunneling

phenomenon. Halflives of such systems should be larger essentially. This is indication

on synthesis of more heavy nucleus with high probability (which can be estimated).

No. 18C + 18C 20C + 20C 22C + 22C 24C + 24C

1 6.3747 5.4789 5.1803 4.5831

2 11.7495 10.5551 9.0621 8.4649

3 18.3186 16.5270 14.4368 13.2424
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Strong plasma screening of pycnonuclear
reactions with 12C 

Plasma screening of pychnonucl. fusion (1)



Plasma screening of pychnonucl. fusion (2)
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Quantum mechanical study on the 

basis of solution of Schrodinger 

equation with potential is

Atomic nuclei in dense stellar 

matter are fully ionized by 

enormous electron pressure, 

electrons are so energetic that 

they constitute almost rigid 

background of negative charge in 

which ions are located [1].

Fig.1: Simulated shapes of electron drops 

around two colliding nuclei at ion-distance:

for Z1 = Z2 : (a) 2.1a12, (b) 1.5a12, (c) 0, 

for Z2 = 10Z1 (d) 2.1a12, (e) 1.5a12, (f) 0 [1].

1. P.A.Kravchuk, D.G.Yakovlev, Phys. Rev. C89,
015802 (2014).
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nuclei with screening:
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1. P.A.Kravchuk, D.G.Yakovlev, Phys. Rev. C89, 015802 (2014).

3

9

0 106
cm

g


Plasma screening of pychnonucl. fusion (3)



No. 12C + 12C with 

screening, MeV

12C + 12C without 

screening, MeV

1 0.02096192 0.51743486

2 0.26733466 0.53667334

3 0.34428857 0.54629258

4 0.47895791 0.55591182

5 0.78677354 0.57515030

6 2.21042084 0.59438877

7 3.83607214 0.61362725

8 0.64248496

9 0.68096192

10 0.72905811

11 0.91182364

12 1.11382765

13 2.76833667

Table: Energies for 

zero-point vibrations 

(data are below 4 

MeV)

32

Energies for quasibound 

states are not much 

different for processes 

with screening and 

without it.

Plasma screening of pychnonucl. fusion (4)



Conclusions (1)

1)Formation of compound nuclear systems needed for synthesis of heavy

nuclei in pycnonuclear fusion with isotopes of Carbon in compact stars is

studied on a quantum mechanical basis.

2)New quantum method for pycnonuclear reactions in compact stars is

developed, taking the nuclear potential of interactions between nuclei into

account. It gives appearance of new states (called as quasibound states), in

which compound nuclear systems of Magnesium are formed from

isotopes of Carbon with the largest probability.

3)Rates of pycnonuclear reactions are changed essentially after taking into

account nuclear forces and quantum mechanical basis.

4)Energy spectra of zero-point vibrations and spectra of quasibound states

are estimated with high precision for reactions with isotopes of Carbon.

5)At the first time influence of plasma screening on quasibound states and

states of zero-point vibrations in pycnonuclear reactions has been studied.



Conclusions (2)

6)The probability of formation of compound nuclear system in

quasibound states in pycnonuclear reaction is essentially larger than the

probability of formation of this system in states of zero-point vibrations

studied by Zel'dovich and followers. Synthesis of Magnesium from

isotopes of Carbon is more probable through the quasibound states than

through the states of zero-point vibrations in compact stars. Energy

spectra of zero-point vibrations are changed essentially after taking

plasma screening into account.

7)Analysis shows that from all studied isotopes of Magnesium only 24Mg

is stable after synthesis at energy of relative motion of 4.881 MeV of

incident nuclei 12C.



Thank you for 

attention!


