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Introduction



Semiclassical Gravity

QFT vs. GR

How to describe quantum matter and gravity interplay?

o QFT in curved spacetimes: quantum matter field ¢ on a physical state w
propagating over classical Lorentzian spacetimes (M, g)

o Semiclassical gravity studies backreaction on the spacetime geometry

Semiclassical Einstein Equations

1
Gab[g] =8rG <:Tab:>w [¢7g] Gab - Rab - EgabR

o Solutions (M, g) provide physical predictions about this interplay.
o Validity:

— Quantum gravity effects are negligible.
— Fluctuations of the quantum stress-energy tensor are small.

o Physical applications:

1. Black Hole Physics: Hawking radiation, evaporation.
2. Cosmology: Inflationary Universe.



The quantum stress-energy tensor (:T,:)

w

o Stress-energy tensor of a scalar field
1 ol . 1
Top = Evavb”’ + ZgabD‘ " — dVaVpo + 58ab8 dVcVapt+
> 1
+&(Gap — VaVp — gapd) ¢~ — Egabmz()2~

e AQFT: quantum scalar field ¢(f) over globally hyperbolic spacetimes
¢(Pf)=0, P=-0+m*+ER,  [6(h),¢(R)] = iA(f, H)1,
where A = Ar — A, is the causal propagator.

o Hadamard point-splitting :¢%:, :0V .V 2, :Tap: (normal ordering)

. 1 . U o
wy = Ho+ +W Ho+ = a2 elr{)u (0—6 + Vlog (}\—Z)) Hadamard state

e Locality and conservation
(:Tabi), = lim D, (w2 (x, x") = Ho+ (x,x")) local and covariant.
X' =X
Ve (:To), =0 covariant conservation.
¢ Renormalization freedoms

Tap=Tap: +c1m*gap + c2m?Gap + alap + BIop, ¢, e, 0,8 €R.



Cosmology



Modern Cosmology

Cosmological spacetimes
o Friedmann-Lemaitre-Robertson-Walker metric (M, g), where M = I; - X I,
g = —dt? 4 a(t)?dx? = a(7)? (7d72 + dx2)
where

— dt cosmological time, dr = a—1dt conformal time
— a(t) scale factor describes the history of the Universe

o A-CDM model: matter is described by a perfect fluid T,® = diag(—o, p, p, p),
where p = wp, w = 0,1/3, —1 (ordinary matter, radiation, dark energy).

e Friedmann equations
.\ 2 ..
a 87 G a 4nG
(7> = 0, - = (Q + 3p)
a 3 a 3

o Inflationary Cosmology: quantum contributions drove the expansion of the
Universe close to the Big Bang (Starobinsky model of Inflation).



Semiclassical cosmological model

Single-field model of Inflation
e Quantum Scalar Field
—O¢ 4+ m?¢ +ERp = 0.

e Initial-value formulation for the FLRW spacetime (M, g) and the quantum
matter field (¢,w)
—R=8nG(:T),,,
Goo(70) = 87G (:Too:),, (70),
Ve (T, =0, Vv

equipped with four initial data (30,36,36’, 353)> and with initial conditions for w.

o The scale factor a(7) is the unique degree of freedom of the problem.

e The energy constraint fixes the quantum state w for given (ao, aj, ag, a((f)).

e (:T:),, contains fourth-order derivatives of a() for arbitrary couplings { € R.
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e (:T:),, contains fourth-order derivatives of a(7) for arbitrary couplings { € R.

I

Proving existence and uniqueness of cosmological semiclassical solutions for
arbitrary couplings &



tum states on FLRW spacetimes

Proposition (energy constraint)

(3)

Given four initial data (ap, ap, ay,ay’ ), it is always possible to select a suffi-

ciently regular quantum state w such that the energy constraint is satisfied at
T =T0:
Goo(0) = 87 G (:Too:),, (70)

e "Vacuum-like” state: quasi-free, pure, homogeneous and isotropic

fim L [ S0 ) e g-ekg k= g
e—0t (2m)3 Jg3 a(7x) a(7y)

w2(X7 y) =
e Temporal modes ¢, (7)
YO+ B =0 QF = k2 +a2m? + (€~ 1/6)a°R
satisfying CLétk — Ckf,’( =
o Modes (i define a sufficiently regular state w if at 7 = 19

<:¢2:>w e c? ([70, 1) » (:Too:),, € c® ([r0, m1]) -

o Given <ao, ay, ay, 383)>, there is still freedom in the choice of (j



Cosmological semiclassical equation

Solve the traced semiclassical Einstein equations: —R =87 G (:T:)

w

(T, = (3 (g - %) O- m2) (%) + (THEY + aom* + am?R +~0R.

e Trace anomaly

<.T.>(an) . 1 (65 - 1)2R2 + RabcdRade - RabRab
e T 4g2 288 720
¢ Renormalization constants
c = A, o= G, Vo
Cosmological constant Newton constant Quantum freedom

e Non-classical dynamics for non-conformal couplings & # %:

1. O(:¢*)_ and OR contain higher order derivatives of a() up to a®(7).
2. O(:¢%)  is highly non local functional of a(7).
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e Non-classical dynamics for non-conformal couplings & # %:

1. O(:¢*)_ and OR contain higher order derivatives of a() up to a®(7).
2. O(:¢%)  is highly non local functional of a(7).
\

Rewrite the equation in a new form to get an initial-value problem which

. . . . D A B o] o ;o 3)
admits a unique solution solution a(7) in [, 71] given <ao. ay, ag > 4, >



HowTo: a simple semiclassical model

e Quantum scalar field ¢ coupled with a classical scalar field 1) in flat spacetime

A
v=A+(¢%),, V= /M Ligd'x=—7 /M Yoled*x, g€ DM),



HowTo: a simple semiclassical model

e Quantum scalar field ¢ coupled with a classical scalar field 1) in flat spacetime

A
v=A+(¢%),, V= /M Ligd'x=—7 /M Yoled*x, g€ DM),

o Perturbative expansion of <:¢>2:>0 in A in the vacuum state

(lin

()0 = (Ry (%)™ = —ix /M (B2(y — x) — A (y — X)) (y)d*y.



HowTo: a simple semiclassical model

e Quantum scalar field ¢ coupled with a classical scalar field 1) in flat spacetime

A
=N+ (:d%),, V:/;ﬁgfx:—g/;¢&gﬂn g € D(M),

o Perturbative expansion of <:¢>2:>0 in A in the vacuum state

<¢;9@:<RM¢;DyU:—Q/L(AQY—X)—Aﬂy—X»¢UWﬁh

e Truncating at first order provides a linearized semiclassical equation for v

%= A+ AT + ..

TIF = - /t F(s)log(t — s)ds, e C([to, £]).

to
1. Unbounded (tame) retarded operator which looses derivatives
17T llloo < C(l[flloo + [10Flloo) s 7Tl £ Cliflloo-
2. Recursive procedures to obtain numerical solutions fail to converge

3. Inverse 7! has nicer properties: ||72[f]|lcc < C’||f]loo .




Inversion procedure

o Using the inversion formula for 7—1[f], the new inverted equation
Y=o+ T 'p-A-..]

can be treated by fixed point methods (Banach fixed point theorem), because
recursive constructions of ¢ now converge!

10
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o Apply this idea to the cosmological equation: roughly,

—R=8nG(:T:), g,s 07<:¢>2:>w:5‘ <¢2:>“’> X' =T [X]+...

H inversion

X=X+ 2T -], X(r) =25
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Inversion procedure

o Using the inversion formula for 71[f], the new inverted equation
Y=o+ T 'p-A-..]

can be treated by fixed point methods (Banach fixed point theorem), because
recursive constructions of ¢ now converge!

o Apply this idea to the cosmological equation: roughly,

—R=8nG(:T:), E,s 87<:¢>2:>w:5‘ Q“% X' =T [X]+...

ﬂ inversion

X=X+ 2T -], X(r) =25

Main result: existence and uniqueness of local solutions

(3)

Given some initial data (ao, ag, ay, ag ) and a sufficiently regular state w which

satisfies the energy constraint at 79, a unique solution a(7) of the semiclassical
equation exists in [g, 7] for sufficiently small 7

10



Linear Stability




Nature of global linearized solutions

The issue of runaway solutions
e Semiclassical theories of gravity seem to include unstable, exponentially growing
solutions in time

e G. T. Horowitz and R. M. Wald. “Dynamics of Einstein’s equation modified by a higher-order
derivative term”, PRD 17, 414-416 (1978).

o G. T. Horowitz. “Semiclassical relativity: The weak-field limit”, PRD 21, 1445-1461 (1980).

o W. M. Suen. “Minkowski spacetime is unstable in semiclassical gravity”, PRL 62, 2217-2220 (1989).

e E. E. Flanagan and R. M. Wald. “Does back reaction enforce the averaged null energy condition in

semiclassical gravity?”, PRD 36, 6233-6283 (1996).
o Perturbative approach (linearization):
8ab = Mab + hap-

The background solution cannot be assumed to be stable if the linear
perturbation becomes dominant at large times t > 0.

e Runaway solutions might invalidate the research of global solutions, which
should describe the evolution of the early Universe at large times.

e Investigate the issue of stability using a semiclassical toy model.

11



The toy model

Semiclassical toy model
e Quantum massive scalar field ¢ + classical scalar field ) in flat spacetime
O¢ — m?¢ = \po, AER
{ gy —agp =M <3¢21>w — A0 <:¢>22>w ) A1, A2,81,8 €R
e Linearization: ¢ = g + 1.

1. Quantization of ¢ is performed “on the background field” .
2. Formulate an interacting theory for the classical perturbation ;.
3. To simplify the analysis, choose 9 € R and the Minkowski vacuum state.

12



The toy model

Semiclassical toy model
e Quantum massive scalar field ¢ + classical scalar field ) in flat spacetime
O¢ — m?¢ = \po, AER
{ gy —agp =M <3¢21>w — A0 <:¢>22>w ) A1, A2,81,8 €R
e Linearization: ¢ = g + 1.

1. Quantization of ¢ is performed “on the background field” .
2. Formulate an interacting theory for the classical perturbation ;.
3. To simplify the analysis, choose 9 € R and the Minkowski vacuum state.

e The dynamics of 11 is governed by the linearized equation

(20— g1) v1 = (A — 20) ()™, (2™ = hx Ka(wr),

D(M) — C=(M)

. o0 1

o) = =1 (8200 = A3 () = T+ 2) | aMo(M?) L — (o M),
1 4m?

o(M?) = =1~ % —am? <a<0, (O- M?)Ag(x, M?) =6,
7T

e The constant a encodes the renormalization freedom of Af_-
12



Steps of the work

Study the following fourth-order differential equation in v

BA(A2O=M)Ka(Y1)+(g20-g1)91 = f, f € D(M), Ka~ (O+a)Ar.

1. Show that past compact solutions 1; respect causality:
supp(¥1) C J* (suppf).

2. Construct the retarded fundamental solution Dg : D(M) — C°°(M), such that
past compact solutions

Y1 = Dg(f)
decay at zero for large t > 0.
3. Prove that
(£20—g1) 91 = (M1 — X20) <:d>2:>é”"’
!
hA(A2 — A1)Ka(¥1) + (€20 — 1)1 = 0

has a well-posed initial-value problem with initial data wgo’j) (0, x), with
Jj€{0,1} or j € {0,1,2,3}, and for wide ranges of values of (a, g1, g2, A\, A\1, \2). -



Consider the semiclassical equation
hA(A20 = A)Ka(¥1) + (20 —g1)yr =, f € D(M)
and its (formal) Fourier transform
S (=(po = i0%)? + p[*) ¥1(po, P) = f(po, P)-

Fix A2 and at least one of the two gj as non-vanishing constants, assume that the
inequality g2A\1 — A2g1 > 0 holds, and set —4m? < a < 0. If S = {z|S(z) = 0}
contains only real negative elements s (suff. cond. A2g» > 0), then the Fourier
transform of the retarded fundamental solution Dg reads

1

é b == I
~(Po:P) = S — 1072 4 6P
and hence
1 Moo [® am2 (AaM? — \p) 2\ 1 np2
Dr(x)=-S"—"A - A _Am M = M) A (x, M2)AM
)= = 2 Gy An0 D gecs [\ s e M

for s € (—4m?,00) U{=A1/X2} in S. Also, Dg : D(M) — C>®(M) is a linear
operator such that a past compact solution

11 = DR(f)

decays as 1/t3/2 for large t.
14



Homogeneous equation

Theorem

The spatial Fourier transform of a smooth solution 11 (t,x) of

"
(20— g1)¥1 = (A1 — Xo0) (:¢*: (()m)
reads
Bu(tp) = X (CHE)TVIT + 3 (pe VT,
seS
where S C (—4m?,00) U {—\1/X\2} C R. If S contains only negative elements s < 0,
then each solution 1 is uniquely fixed by the initial values

W (0,x)=¢/(x), je{o,....2S]},
where |S| is the cardinality of S, and ¢/ € C§°(R3). In this case, ¥1(t,x) decays at
least as 1/t3/2 at large times t.
e There are sufficient conditions on the parameters (X, A1, \2, g1, g2) such that
this Theorem holds (s < 0), with goA\1 — X281 > 0;

e Number of initial data (two/four) depends on the number of negative distinct
solutions (one/two).

15



The analogy with the cosmological problem

From the toy model to the linearized Semiclassical Einstein Equations

e Formal correspondence

(lin)

—R+4A=8rG(:T:), < (&0—g)b1=(\ /\zD)<¢>> :

viewing R as the perturbative external field 1)1 around a spacetime with
vanishing curvature 19 = 0 (Minkowski spacetime)

(T, = (3 <£,é>[], ><¢2> + (an)Jrclm + cam?R 4+ A0OR.

e Fixing A = 0, neglecting <:T:>Ej'") as quadratic contribution in R, and setting

1 m? 1
g=—-——=-_2%, & = a3, A=¢, AL =m?, >\2:3<5*6)‘

m? 1
M —Xg >0 & a—H 2> (5—*)
mp T

o Guessing stability: results are the same as in the toy model for
£>1/6, az >0, a> —4m?, sufficiently large m?

e The linearized model with source corresponds to include a classical source

incorporating fluctuations (Einstein-Langevin equations)
16



Linear Stability of Minkowski spacetime
o Backreaction of a massive quantum scalar field ¢, with m?>0,0< £<1/6,
over Minkowski spacetime (M, n)
o Steps of the work:

1. Show that (M, n) is solution of the zeroth-order Semiclassical Einstein
Equations using the Minkowski vacuum state wp

GO [n] = 87 G (:Taplep, m]:)? (0)

2. Study linear stability of Minkowski spacetime against linear perturbations
h,p using the linearized Semiclassical Einstein Equations

GDln, h] = 872G (:Top[p,m, HHYD 1)

where (:T,p[®, 7, h]:)sul) is obtained by perturbation theory.

3. Show that classical gravitational waves in the radiative gauge (7?°h,;, = 0)
are the unique solutions of Eq. (1)

4. There exist several choices of the renormalization constants of the model
such that runaway solutions are ruled out.

e The paper containing the proof is now in preparation and should appear within
1-2 months... Stay tuned!

17



Conclusions

Summary

o Local existence of semiclassical solutions is established by using Banach fixed
point theorem.

e An inversion procedure is crucial to prove existence and uniqueness.

o Linear stability holds for several choices of the renormalization constants.

Work in Progress and Future Outlooks
o Linear Stability for different choices of reference state (e.g., thermal states).
o Studying stability in other class of spacetimes (De Sitter, FLRW, etc.).
e Formulation of the theory of cosmological perturbations in Semiclassical Gravity.

18
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QFT in curved spacetimes (1/2)

Quantization of a field theory in flat spacetime is based on the choice of a Fock space
built over a vacuum as unique Lorentz invariant state.

Algebra of Observables
How to quantize on curved

spacetimes? o A(M): unital x-algebra of

observables.

e No preferred vacuum state
e Generators: smeared quantum

e No symmetries = fields &(f), f € D(M),
e Infinite inequivalent o*(f) = o(F).
representations
e States (a),, : A — C are linear
positive normalized functionals.

Assign to each spacetime a *-algebra M — A(M).

Identify quantum fields as abstract observables which can be multiplied with
each other, without being represented as operators on a Hilbert space.

Find a physical state w to get measurements.

20



QFT in curved spacetimes (2/2)

Free Quantum Klein-Gordon field
e Linear Klein-Gordon field

#(Pf) =0, P=—0+4m?+¢R, O=gsVV?, £eER

¢ In globally hyperbolic spacetimes, such as Minkowski, FLRW, etc., there are
unique advanced Ap and retarded Ag fundamental solutions PA /g = 4.

e Local and covariant quantum fields satisfy the canonical commutation relations
(CCR algebra)

[p(f), d(R)] = iA(f, £)1, A = AR — Ay causal propagator
e Two-point functions of quasi-free states

walf, B) = (GR)B(R), = (i, ) + LA, ) € /(M x M).

e GNS construction to represent ¢(f) € A(M) as operator over some Hilbert
space, and to recover the Fock representation built over w.

e Quantum scalar fields should enter the Semiclassical Einstein Equations
Gab[g] =8nG <:Tab:>w [¢7g]'

o Extending A(M) to include quadratic observables such as :T_:

21



Expectation values of :¢%: and : Tyo:

Point-splitting regularization mode-wise

w(r)? w(T w(ro)?
<:d)2:)w7 ! /R3 ‘Ck‘ —C’H' Tk))dk+ () Iog< (0)>— (o) +a1m2+n/2R(‘r)

(2m)3a2 8m23a2 a(T) 167222

<k |2 I<kl?
(:Too)w = 2Tr)334 /RS < 2 k2 +am? — (66 —1)a° ) +aH (66 — 1) 2Re(C4¢1) — CoH(r, k)) dk

2 3/—:2
= oma (5 ) +kam® + kym? Goo + k3loo
T

Point-splitting functions

1 Vv
() = — - 20),
¢ 2k 4K3
CHr. k) = k  am? — 2H(66 —1)  atm* 12 (€ — 1) m2a*H? — a* (¢ — 1)% 2Igo(7)
T, k) = — - 5
¢ 4k 16k(k2 + 25)
References

J. Schlemmer (PhD Thesis), A. Degner (PhD Thesis), T.P. Hack (arXiv:1306.3074s),
D. Siemssen (arXiv:1503.01826)
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Semiclassical toy-model: perturbative approach

e Perturbation theory

V= -/M L(x)g(x)d*x = _% ./M & (X1 (x)g(x)d*x, g € D(M),

Ru(¢) = S(V)IT(S(V)#?),  S(V)=T (p<ﬁv)) .

e The Bogoliubov map R\, allows to obtain a perturbative expansion of the
interacting ¢? as formal power series in A

(%), = w(Rv(#) = ()5 + ()07 + ..,
() = (@) Lo, ()™ = é (w(T (V§?)) —w(Ve?)) .

o The state for the interacting theory is constructed as w o Ry by means of the
free state, and it is fixed once and forever.

o Linearized expectation value of the Wick square in the adiabatic limit (g = 1)
<:¢2:>gin) (x) = —ih)\/ (AzF(y —x)— Ai(y - X)) Y1(y)dy,
M
where Ap(y,x) = h=' (T (6(y)$(x))) and At (y,x) ="~ (3(y)(x))o-

23



Epstein-Glaser renormalization

o Hormander's criterion for multiplying distributions: given u, v € D'(M,C), if
WF(u) @ WF(v) = {(x, k + p) : (x, k) € WF(u),(x, p) € WF(v)}
does not intersect the zero section, then u - v is well-defined in D’(M,C)

e Wave Front Sets of propagators: given (xi, k1) ~ (x2, k2),

a. WF(Ay) = {(x1, ki, x2, —ka) € (T*(M)?\{0}) : ki > O}
b. WF(Af) = WF(8) U {(x1, k1, x2, —k2) € (T*(M)?\{0}) : k1 > 0 if x1 ¢
J_(XQ)7 and k; <0 if x; € J_(XQ)}.

o Epstein-Glaser renormalization: extending time-ordered products to the diagonal

e Steinmann’s scaling degree: for u € D’(R9\{0}),
sd(u) =inf{o € R : limy_,o+ A7u(fy) = 0}.

a. If sd(u) < d, then the extension ue € D'(RY) is unique
b. If d <sd(u) < oo, then

fe=uet+ Y, cad%x, Ue, fie € D'(RY).
|ov| <sd(u)—d

c. If sd(u) = oo, then u is not extensible.

o sd(Af) = 2, then sd(AZ) = 4, and hence A%_— = AZ + cix

24



Fourier transform of the Wick square

in . Ah ) ~
F{(6%)5 " Hpo,p) = Jim e Fa(=(po — ie)” + |pI*)¥1(po, ),

€3 4m? 1 1
Fa.(z) = 1— —(——— — —— ) am? = —(pg — i€)? 2,
@)= [ 1- T (e - s 2= —(po — icP + ol

Fa(z) is analytic for z € C\ (oo, —4m?], and has a branch cut on z € (—o0, —4m?).

[ F, (z)|

—4m? a z

Zam? -
In the massless case [G. T. Horowitz 1980]

2 2
—p; + |p
Fa(—péﬂplz):log(of ;. —p+IplP>0,a>0.
25



Nature of past compact solutions

o Decomposition of a past compact solution ¢1 = Dg(f), f € D(M).

1 _4m? (M2 — Ay) e
D =—> —A Agr(x, M?)dM
R(x) s;g () R(x,s)— 16772[; NPT ME semyp Rr(x, M)dM?=,

$1(x) = o7 (X) +f (%)
o Unlike 99(x), %< (x) cannot be determined by a finite number of initial
conditions, because the integration in M2 is over uncountably many points.

e However, the kernel of the operator

2275(2) z=— = @Y 2
&= s (o — i€)? + Ip|

does not contain non-vanishing elements, then T(z) can be inverted, and hence
it disappears from the homogeneous equation S(z)y; = 0.

e T(z) should be related to the unbounded operator T[f] seen in the local case!

e Unlike branch cuts, only the contributions due to the poles can give origin to
non trivial solutions of S(z)y; = 0.
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