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How to gain insight into the structure of hadrons

Important question: How do hadronic properties emerge from the
properties of the constituent partons?
Experimentally: Perform high-energy scattering experiments that can
resolve the inner hadron structure (e.g. scatter electrons off a proton)
Depending on the kinematics (inclusive vs. exclusive): Different
properties of hadron structure
In QCD: Factorization between short range and long range physics
Long range functions provide information on partons within proton
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Hadronic structure from exclusive processes: DVCS

Assumptions:
Photon highly virtual, Q2 ≡ −q2 ≫ p2

s ≫ m2
p
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Hadronic structure from exclusive processes: DVCS

The DVCS amplitude is determined by the hadronic tensor Tµν which
corresponds to a time-ordered product of EM currents

Tµν = i

∫
d4x e i(q+q′)·x 〈p′∣∣ T Jµ(x)Jν(0) |p⟩

with
Jµ =

∑
f

Qf ψ̄f γµψf .

Applying the operator product expansion (OPE) [Wilson, 1969, Zimmermann, 1973]

the product of currents is related to the leading-twist spin-N operators
(focus on flavor non-singlet operators in this talk)

ONS
µ1...µN

= Sψ̄′γµ1Dµ2 ...DµN
ψ.

Sam Van Thurenhout Theory seminar HUN-REN Wigner RCP 4 / 44



Hadronic structure from exclusive processes: GPDs

The corresponding hadronic matrix elements of these operators define the
generalized parton distributions (GPDs), which are the non-forward
generalizations of the standard parton distribution functions (PDFs)

PDFs give the probability to find a quark inside the proton with
momentum xp (0 ≤ x ≤ 1). They encode the longitudinal
momentum/polarization carried by partons within fast-moving
hadrons.
GPDs describe (a) transverse distributions of partons and (b)
contributions partonic orbital angular momentum to total hadronic
spin
⇒ Important quantities for describing proton/hadron structure (e.g.
proton spin puzzle [Aidala et al., 2013, Leader and Lorcé, 2014, Deur et al., 2018, Ji et al., 2021])
⇒ Will be measured with unprecedented precision at a future EIC
[Boer et al., 2011], [Abdul Khalek et al., 2021]
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Scale dependence of GPDs

As GPDs are defined in terms of hadronic matrix elements of QCD
operators, they cannot be computed in perturbation theory.

→ Direct extraction from experimental data (see e.g. [Brock et al., 1995]) or
using lattice QCD (see e.g. [Alexandrou et al., 2020], [Ji et al., 2021], [Wang et al., 2021])

Phenomenologically the dependence of the distributions on the energy scale
of the experiment is also important. This is determined by the scale
dependence of the operators, characterized by their anomalous dimension

d[O]

d lnµ2 = γ[O], γ ≡ asγ
(0) + a2

sγ
(1) + ...

The operator anomalous dimensions can be calculated perturbatively in
QCD!
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Composite operators and distributions

During this talk: Focus on leading-twist flavor-non-singlet quark operators

O = SψλαΓDν1 . . .DνNψ

with Dµ = ∂µ − igsAµ the covariant derivative.

Different Dirac structure Γ depending on the physical process
Wilson operators:

Oµ1...µN
= Sψλαγµ1Dµ2 . . .DµN

ψ

Transversity operators:

OT
νµ1...µN

= Sψλασνµ1Dµ2 . . .DµN
ψ
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Scale-dependence of distributions

In practice, the anomalous dimensions are extracted by renormalizing
partonic matrix elements of the operators

⟨ψ(p1)|O(p3)|ψ(p2)⟩

⊗

p1 p2

p3

In forward kinematics (p3 = 0): Anomalous dimensions in the MS-scheme
related to 1/ε-pole of bare OME in D = 4 − 2ε dimreg in a simple way
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Operator renormalization in non-forward kinematics

⟨ψ(p1)|O(p3)|ψ(p2)⟩
In non-forward kinematics (p3 ̸= 0), there is mixing with total derivative
operators

ON+1
∂ON

...
∂NO1

 =


ZN,N ZN,N−1 ... ZN,0

0 ZN−1,N−1 ... ZN−1,0
...

... ...
...

0 0 ... Z0,0



[ON+1]
[∂ON ]

...
[∂NO1]


Hence we now also have an anomalous dimension matrix (ADM)

γ̂ = − d ln Ẑ
d lnµ2 =


γN,N γN,N−1 ... γN,0

0 γN−1,N−1 ... γN−1,0
...

... ...
...

0 0 ... γ0,0

 .

Hence now the 1/ε-pole of the OME involves some combination of the
elements of the ADM
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Operator renormalization: Non-forward kinematics

The elements of the ADM determine the scale dependence of non-forward
(exclusive) distributions through the ERBL equation
[Efremov and Radyushkin, 1980a],[Efremov and Radyushkin, 1980b],[Lepage and Brodsky, 1979],
[Lepage and Brodsky, 1980]

dH(x , χ, t, µ2)

d lnµ2 =
1
|χ|

∫ 1

−1
dy V (x , y)H(y , χ, t, µ2).

N∑
k=0

γN,ky
k = −

∫ 1

0
dx xNV (x , y).

We now have to choose a basis for the total-derivative operators. In this
talk we will focus on two convenient options: the total derivative basis and
the Gegenbauer basis.

Diagonal elements = forward anomalous dimensions
Triangular
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The total derivative basis

In this basis the operators are defined as

ODk,N−k = (∆ · ∂)k{ψ′(∆ · Γ)(∆ · D)N−kψ}

with ∆2 = 0. E.g. for N = 0 we simply have {ψ′(∆ · Γ)ψ} (conserved
current if Γ = γµ!) and for N = 1{

ψ′(∆ · Γ)(∆ · D)ψ, (∆ · ∂)ψ′(∆ · Γ)ψ
}
.

This choice of operator basis is used for hadronic studies on the
lattice, see e.g. [Göckeler et al., 2005] and [Gracey, 2009]

In this basis, the anomalous dimensions for low-N operators were
computed directly up to O(a3

s ) [Gracey, 2009, Kniehl and Veretin, 2020]

These low-N results have been extended in [Moch and Van Thurenhout, 2021] and
[Van Thurenhout, 2022] to produce some all-N results based on a consistency
relation following from the renormalization structure of the operators

- Large nf : 5-loop Wilson, 4-loop transversity anomalous dimensions
- Large nc : 2-loop Wilson anomalous dimensions
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The total derivative basis

The consistency relation can be written in the following form

γDN,k =

(
N

k

) N−k∑
j=0

(−1)j
(
N − k

j

)
γj+k, j+k

+
N∑
j=k

(−1)k
(
j

k

) N∑
l=j+1

(−1)l
(
N

l

)
γDl , j


γN,N γDN,N−1 ... γDN,0

0 γN−1,N−1 ... γDN−1,0
...

... ...
...

0 0 ... γ0,0


e.g.

γDN,N−1 =
N

2
(γN−1,N−1 − γN,N)

NOTE: Diagonal elements independent of the operator basis (i.e.
γDN,N = γBN,N = γN,N)
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The total derivative basis

γDN,k =

(
N

k

) N−k∑
j=0

(−1)j
(
N − k

j

)
γj+k, j+k

+
N∑
j=k

(−1)k
(
j

k

) N∑
l=j+1

(−1)l
(
N

l

)
γDl , j

To use this relation constructively, we need two ingredients:
The forward anomalous dimensions γN,N , which are (partially)
available up to five loops [Gross and Wilczek, 1973, Floratos et al., 1977, Moch et al., 2004,

Blümlein et al., 2021, Gracey, 1994, Davies et al., 2017, Velizhanin, 2012, Velizhanin, 2020,

Ruijl et al., 2016, Moch et al., 2017, Herzog et al., 2019, Blümlein, 2023, Gehrmann et al., 2023]

The last column γDN,0 which serves as a boundary condition. The latter
can be related to the operator matrix elements, the computation of
which can be fully automated using computer algebra methods (e.g.
FORCER [Ruijl et al., 2020] in FORM [Vermaseren, 2000, Kuipers et al., 2013])
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The Gegenbauer basis

In this basis the operators are written in terms of Gegenbauer polynomials

OGN,k = (∆ · ∂)kψ′(∆ · Γ)C 3/2
N

(←
D ·∆−∆·

→
D

←
∂ ·∆+∆·

→
∂

)
ψ

with [Olver et al., 2010]

C ν
N(z) =

Γ(ν + 1/2)
Γ(2ν)

N∑
j=0

(−1)j
(
N

j

)
(N + j + 2)!

(j + 1)!

(1
2
− z

2

)j
.

This choice of operator basis is natural within conformal schemes
[Efremov and Radyushkin, 1980a], [Belitsky and Müller, 1999], [Braun et al., 2017]

The anomalous dimensions of the Wilson operators in this basis are
known up to O(a3

s ) [Braun et al., 2017].
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The Gegenbauer basis

The reconstruction of the anomalous dimensions in this conformal
approach relies on consistency relations coming from the conformal
algebra
At one loop, exact conformal symmetry at leading order dictates that
the ADM in the Gegenbauer basis is diagonal
Beyond leading order, off-diagonal elements are generated by the
so-called conformal anomaly which is currently known to two-loop
accuracy [Braun et al., 2017, Müller, 1991, Braun et al., 2016] (although a closed-form
expression at two loops is currently not available!)

γ
G,(1)
N,k = −

γ
(0)
N,N − γ

(0)
k,k

a(N, k)

{
− 2(2k + 3)

(
β0 + γ

(0)
k,k

)
ϑN,k + 2∆G,(0)N,k

}

As generically the L-loop anomalous dimensions depend only on the
(L− 1)-loop conformal anomaly [Müller, 1991], they could be calculated up
to three loops using this approach
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Goal of this work

In the present work we want to construct an explicit similarity
transformation between both bases

γ̂DN = R̂−1
N γ̂GN R̂N

Use the properties of both bases to ones advantage in the
computation of the operator anomalous dimensions
Use to validate computations
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Setting up the similarity transformation

Start from relating local operators to non-local ones [Braun et al., 2003]

ON(0) = PN(∂1, ∂2)ϕ(z1)ϕ(z2)|z1,2→0

Here PN is the characteristic polynomial (of degree N). E.g. for the
derivative operators in the Gegenbauer basis we have [Braun et al., 2017]

OGN,k = (∂1 + ∂2)
kC

3/2
N

(
∂1 − ∂2

∂1 + ∂2

)
O(z1, z2)|z1,2→0

with
O(z1, z2) = ψ̄(z1n)/nψ(z2n).

The corresponding characteristic polynomial can be seen to be

PGN,k(z1, z2) = (z1 + z2)
kC

3/2
N

(
z1 − z2
z1 + z2

)
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Setting up the similarity transformation

To set up the basis transformation, we now want the corresponding relation
for the operators in the derivative basis, and then compare the derivative
structure in both cases. We have

PDN,k(z1, z2) = zk2 (z1 + z2)
N ⇒ ODN,k = ∂k2 (∂1 + ∂2)

NO(z1, z2)|z1,2→0

Comparing with the result in the Gegenbauer basis (we focus on the
conformal operators k = N in what follows)

PGN,N(z1, z2) = (z1+ z2)
NC

3/2
N

(
z1 − z2
z1 + z2

)
= (z1+ z2)

NC
3/2
N

(
1− 2z2

z1 + z2

)
we see that the two bases can be related by expanding the Gegenbauer
polynomials as

C
3/2
N (1 − 2z) =

N∑
k=0

cN,kz
k .

The elements of the rotation matrix, RN,k , will then simply correspond to
the series coefficients cN,k .
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Setting up the similarity transformation

From the definition of the Gegenbauer polynomials it immediately follows
that

C
3/2
N (1 − 2z) =

1
2N!

N∑
k=0

(−1)k
(
N

k

)
(N + k + 2)!

(k + 1)!
zk

and hence

RN,k = cN,k =
1

2N!
(−1)k

(
N

k

)
(N + k + 2)!

(k + 1)!
.

To compute the elements of the inverse transformation matrix we start from

C
3/2
N (1 − 2z) =

N∑
k=0

cN,kz
k

to write

zN =
N∑
j=0

R̃N,j C
3/2
j (1 − 2z)

with R−1
N,k ≡ R̃N,k .
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Setting up the similarity transformation

The elements of the inverse transformation matrix can then be obtained
using the properties of the Gegenbauer polynomials [Gradshteyn and Ryzhik, 2007]

Orthogonality:∫ 1

0
dz C 3/2

N (1 − 2z)C 3/2
k (1 − 2z)[4z(1 − z)] =

(N + 1)(N + 2)
3 + 2N

δN,k

⇒

R̃N,k =
4(3 + 2k)

(k + 1)(k + 2)

∫ 1

0
dz zN+1(1 − z)C

3/2
k (1 − 2z)

DE representation:

C
3/2
N (t) =

(−1)N(N + 2)
2N+1N!

1
1 − t2

dN

dtN
(1 − t2)N+1

⇒
R̃N,k =

3 + 2k
22k+1(k + 1)k!

∫ 1

0
dz zN

dk

dzk
[4z(1 − z)]k+1
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Setting up the similarity transformation

The remaining integral can be evaluated using IBP and we find

R̃N,k =
2(−1)k(3 + 2k)k! (N + 1)!

(N + k + 3)!

(
N

k

)
.

Hence the similarity transformation, in component form, becomes

γD
N,k =

(−1)k(N + 1)!
(k + 1)!

N∑
l=k

(−1)l
(
N

l

)
l! (3 + 2l)

(N + l + 3)!

l∑
j=k

(
j

k

)
(j + k + 2)!

j!
γG
l,j

γG
N,k = (−1)k

k!

N!
(3 + 2k)

N∑
l=k

(−1)l
(
N

l

)
(N + l + 2)!

(l + 1)!

l∑
j=k

(
j

k

)
(j + 1)!

(j + k + 3)!
γD
l,j

Neat consequence: 1-loop off-diagonal elements in the D-basis ADM
admit a representation in terms of (sums of) the diagonal ones

Sam Van Thurenhout Theory seminar HUN-REN Wigner RCP 21 / 44



Illustration: 1-loop quark anomalous dimensions

γ
D,(0)
N,k =

(−1)kN! (N + 1)!
(k + 1)!

N∑
l=k

(−1)l
(
l

k

)
(3 + 2l)(l + k + 2)!

l! (N − l)! (N + l + 3)!
γ
(0)
l,l

= 2 CF

( 1
N + 2

− 1
N − k

)
with

γ
(0)
N,N = CF

(
4S1(N) +

2
N + 1

+
2

N + 2
− 3
)

for Wilson operators (CF = (n2
c − 1)/(2nc)) and

γ
T ,D,(0)
N,k =

(−1)kN! (N + 1)!
(k + 1)!

N∑
l=k

(−1)l
(
l

k

)
(3 + 2l)(l + k + 2)!

l! (N − l)! (N + l + 3)!
γ
T ,(0)
l,l

= 2 CF

( 1
N + 1

− 1
N − k

)
with

γ
T ,(0)
N,N = CF

(
4S1(N) +

4
N + 1

− 3
)

for transversity ones.
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Illustration: 1-loop quark anomalous dimensions

The anomalous dimensions can generically be written in terms of
denominators in N and k and harmonic sums. The latter are recursively
defined by [Vermaseren, 1999, Blümlein and Kurth, 1999]

S±m(N) =
N∑
i=1

(±1)i i −m ,

S±m1,m2, ...,md
(N) =

N∑
i=1

(±1)i i −m1 Sm2, ...,md
(i) .

The expressions for γD,(0)N,k and γT ,D,(0)
N,k above agree with previous

calculations [Artru and Mekhfi, 1990, Shifman and Vysotsky, 1981, Baldracchini et al., 1981, Blümlein, 2001,

Moch and Van Thurenhout, 2021, Van Thurenhout, 2022]. The sums were evaluated using the
MATHEMATICA package SIGMA [Schneider, 2007, Schneider, 2013].
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Consistency relation from CP-symmetry

Consider the inverse basis transformation,

γGN,k = RN,lγ
D
l ,j R̃j ,k .

The operators in the Gegenbauer basis are CP-even. At the level of the
anomalous dimensions, this means that γGN,k = 0 whenever N − k is odd.
Substituting into the equation above we then find a tower of relations for
the anomalous dimensions in the derivative basis

N∑
l=k

(−1)l
(
N

l

)
(N + l + 2)!

(l + 1)!

l∑
j=k

(
j

k

)
(j + 1)!

(j + k + 3)!
γDl ,j = 0 (N − k odd).

Note that these relations are valid to all orders of perturbation theory.
Setting k = N − 1 we reproduce

γDN,N−1 =
N

2
(γN−1,N−1 − γN,N)
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Consistency relation from CP-symmetry

This exactly matches the relation derived from our consistency relation,

γDN,k =

(
N

k

) N−k∑
j=0

(−1)j
(
N − k

j

)
γj+k, j+k

+
N∑
j=k

(−1)k
(
j

k

) N∑
l=j+1

(−1)l
(
N

l

)
γDl , j

and the same holds for other (N − α)-values with α odd. Hence, we can
conclude that the physical origin of this consistency condition is directly
related to CP symmetry.
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Similarity transformation in the singlet sector

The above analysis can be repeated for the flavor singlet operators, for
which mixing between quark and gluon operators has to be taken into
account. The gluon operators in the derivative basis are written as

Og ,D
k,N−1 = (∆ · ∂)kFµ∆(∆ · D)N−1F µ

∆

and in the Gegenbauer basis [Braun et al., 2022]

Og ,G
N,k = 6(∆ · ∂)k−1Fµ∆C

5/2
N−1

(
⃗D ·∆−∆ · D⃗
⃗∂ ·∆+∆ · ∂⃗

)
Fµ∆.

Here we defined
Fµ∆ = Fµν∆

ν .

The similarity transformation is written as

γ̂g ,D = Ĝ−1γ̂g ,GĜ .
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Similarity transformation in the singlet sector

Following similar steps as before
Orthogonality:∫ 1

0
dz C 5/2

N (1−2z)C 5/2
k (1−2z)[4z(1−z)]2 =

(N + 1)(N + 2)(N + 3)(N + 4)
9(5 + 2N)

δN,k

DE representation:

C
5/2
N (t) =

(−1)N(N + 3)(N + 4)
12 · 2NN!

1
(1 − t2)2

dN

dtN
(1 − t2)N+2

we find

GN,k = − 1
2(N − 1)!

(−1)k
(
N − 1
k − 1

)
(N + k + 2)!

(k + 1)!

G̃N,k = −2(−1)k(3 + 2k)k! (N + 1)!
N(N + k + 3)!

(
N

k

)
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Two-loop anomalous dimensions beyond leading color

Let us decompose the two-loop anomalous dimensions as follows

γ
(1)
N,k = γ

(1)
N,k

∣∣∣∣
nf

+ γ
(1)
N,k

∣∣∣∣
LC

+ γ
(1)
N,k

∣∣∣∣
slc
.

We will focus on the Wilson operators in what follows. The first term
represents the large-nf limit while the remaining terms represent the
leading- and subleading-color terms respectively. In terms of the color and
flavor factors we have

γ
(1)
N,k

∣∣∣∣
nf

∼ nf CF ,

γ
(1)
N,k

∣∣∣∣
LC

∼ C 2
F ,

γ
(1)
N,k

∣∣∣∣
slc

∼ CF

(
CF − CA

2

)
with CF = n2

c−1
2nc , CA = nc .
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Two-loop anomalous dimensions beyond leading color

The expressions for γD,(1)N,k

∣∣∣∣
nf

and γD,(1)N,k

∣∣∣∣
LC

in the derivative basis were

computed in [Moch and Van Thurenhout, 2021]

Fully analytic expression for γD,(1)N,k

∣∣∣∣
slc

currently not known

γ
D,(1)
N,N−1

∣∣∣∣
slc
=N

2 (γN−1,N−1−γN,N)

∣∣∣∣
slc

; γD,(1)
N,0

∣∣∣∣
slc

from OMEs

In the Gegenbauer basis we can write [Braun et al., 2017]

γ
G,(1)
N,k

∣∣∣∣
slc

=
2(γ(0)N,N − γ

(0)
k,k)

a(N, k)
[−2(2k + 3)β0|CA

ϑN,k ]

with
β0 =

11
3
CA − 2

3
nf and β0|CA

=
11
3
CA.

Hence the analytic structure of γG,(1)N,k

∣∣∣∣
slc

is the same as that of γG,(1)N,k

∣∣∣∣
nf

!
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Two-loop anomalous dimensions beyond leading color

The expansion of γG,(1)N,k

∣∣∣∣
nf

in terms of harmonic sums is [Moch et al., 2017]

γ
G,(1)
N,k

∣∣∣∣
nf

=
8
3

nf CF

a(N, k)
ϑN,k

{
− 2
(
S1(N)− S1(k)

)
(2k + 3)− (2k + 3)

( 1
N + 1

+
1

N + 2

)
+ 4 +

1
k + 1

− 1
k + 2

}
and leads to

γ
G,(1)
N,k

∣∣∣∣
slc

=
88
3
CF

(
CF − CA

2

) ϑN,k

a(N, k)

{
− 2
(
S1(N)− S1(k)

)
(2k + 3)− (2k + 3)

( 1
N + 1

+
1

N + 2

)
+ 4 +

1
k + 1

− 1
k + 2

}
Using our similarity transformation one can then generate the fixed-N

anomalous dimensions as

γ
D,(1)
N,k

∣∣∣∣
slc

=
(−1)k(N + 1)!

(k + 1)!

N∑
l=k

(−1)l
(
N

l

)
l! (3 + 2l)

(N + l + 3)!

l∑
j=k

(
j

k

)
(j + k + 2)!

j!
γ
G,(1)
l,j

∣∣∣∣
slc
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Two-loop anomalous dimensions beyond leading color

Agreement with low-N computations in [Gracey, 2009]

Agreement with γD,(1)N,N−1

∣∣∣∣
slc

and γD,(1)N,0

∣∣∣∣
slc

[Van Thurenhout, 2023]

Agreement with values obtained from x-space expression in e.g.
[Mikhailov and Radyushkin, 1985]

Fixed moments up to N = 10 explicitly computed, see [Van Thurenhout, 2023]

Illustrative(?) plot time!
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Two-loop anomalous dimensions beyond leading color

N∑
k=0

γN,ky
k = −

∫ 1

0
dx xNV (x , y).

(1 − y)2

γ
(1)
N,N

N∑
k=0

γ
D,(1)
N,k yk ,

(1 − y)2

γ
(1)
N,N

N∑
k=0

γ
D,(1)
N,k

∣∣∣∣
LC
yk ,

(1 − y)2

γ
(1)
N,N

N∑
k=0

(
γ
D,(1)
N,k

∣∣∣∣
LC

+ γ
D,(1)
N,k

∣∣∣∣
nf

)
yk ,

(1 − y)2

γ
(1)
N,N

N∑
k=0

γ
D,(1)
N,k

∣∣∣∣
slc
yk

We plot the results in QCD (CA = 3 and CF = 4/3) and set nf = 3
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Two-loop anomalous dimensions beyond leading color
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Two-loop anomalous dimensions beyond leading color
The analysis presented above can be repeated to compute the two-loop
subleading-color part of the transversity anomalous dimensions. The
corresponding leading-nf expression in the Gegenbauer basis was computed
in [Van Thurenhout, 2022] to be

γ
T ,G,(1)
N,k

∣∣∣∣
nf

= −16
3

nf CF

a(N, k)
ϑN,k

{
(3 + 2k)

(
S1(N)− S1(k) +

1
N + 1

)
− 1

k + 1
− 2

}
.

Hence the expression for the subleading-color part becomes

γ
T ,G,(1)
N,k

∣∣∣∣
slc

= −176
3

ϑN,k

a(N, k)
CF

(
CF − CA

2

){
(3 + 2k)

(
S1(N)− S1(k) +

1
N + 1

)

− 1
k + 1

− 2

}

such that in the derivative basis we have

γ
T ,D,(1)
N,k

∣∣∣∣
slc

=
(−1)k(N + 1)!

(k + 1)!

N∑
l=k

(−1)l
(
N

l

)
l! (3 + 2l)

(N + l + 3)!

l∑
j=k

(
j

k

)
(j + k + 2)!

j!
γ
T ,G,(1)
l,j

∣∣∣∣
slc
.
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Two-loop anomalous dimensions beyond leading color

N∑
k=0

γTN,ky
k = −

∫ 1

0
dx xNV T (x , y).

(1 − y)2

γ
T ,(1)
N,N

N∑
k=0

γ
T ,D,(1)
N,k yk ,

(1 − y)2

γ
T ,(1)
N,N

N∑
k=0

γ
T ,D,(1)
N,k

∣∣∣∣
LC
yk ,

(1 − y)2

γ
(1)
N,N

N∑
k=0

(
γ
T ,D,(1)
N,k

∣∣∣∣
LC

+ γ
T ,D,(1)
N,k

∣∣∣∣
nf

)
yk ,

(1 − y)2

γ
T ,(1)
N,N

N∑
k=0

γ
T ,D,(1)
N,k

∣∣∣∣
SLC

yk

We plot the results in QCD (CA = 3 and CF = 4/3) and set nf = 3
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Two-loop anomalous dimensions beyond leading color
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Validation of conformal anomaly computations

In conformal schemes, the conformal anomaly constitutes vital input for the
computation of the off-diagonal elements of the ADM. At the 1-loop level
it is given by [Braun et al., 2017, Braun et al., 2016, Braun and Manashov, 2014]

∆
G,(0)
N,k = 2CF (2k + 3)a(N, k)

(
AN,k − S1(N + 1)
(k + 1)(k + 2)

+
2AN,k

a(N, k)

)
ϑN,k

with

AN,k = S1

(
N + k + 2

2

)
−S1

(
N − k − 2

2

)
+2S1(N−k−1)−S1(N+1).

The two-loop conformal anomaly is also known, although no closed-form
expression exists thus far [Braun et al., 2017].
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Validation of conformal anomaly computations

Using our new similarity transformation, the conformal anomaly (in the
G-basis) can be written in terms of the leading-color anomalous dimensions
in the D-basis at 1 order in as higher. For example the 1-loop conformal
anomaly can be written as

∆
G,(0)
N,k = (2k + 3)

(
γ
(0)
k,k +

22
3
CF

)
− (N − k)(N + k + 3)

2(γ(0)N,N − γ
(0)
k,k)

RN,l R̃j ,kγ
D,(1)
l ,j

∣∣∣∣
LC

Using the expression for γD,(1)N,k computed in [Moch and Van Thurenhout, 2021] we find

exact agreement for ∆G,(0)N,k .
Similar expressions at higher orders
Leading-color anomalous dimensions in D-basis in principle
straightforward to compute
Representation of the anomaly in terms of sums, which can be
efficiently evaluated for fixed (N, k) using e.g. the SUMMER package
[Vermaseren, 1999] in FORM [Vermaseren, 2000, Kuipers et al., 2013]
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1-loop gluon ADM

In the flavor-singlet sector:(
Oq,D

Og ,D

)
=

(
Zqq,D Zqg ,D

Z gq,D Z gg ,D

)(
[Oq,D]
[Og ,D]

)
In the case of non-forward kinematics these operators additionally mix with
total-derivative ones and the Z ij ,D (and the corresponding anomalous
dimensions) become matrices. Focussing on O(as) and the purely gluonic
case for illustration we have

Ẑ gg ,D = 1 +
as
ε
γ̂ gg ,D,(0) + O(a2

s )

Diagonal elements (forward anomalous dimension)
[Balitsky and Braun, 1989, Braunschweig et al., 1987]:

γ
gg ,(0)
N,N = CA

(
4S1(N+1)+

4
N + 3

− 4
N + 2

+
4

N + 1
− 4
N
− 11

3

)
+

2
3
nf
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1-loop gluon ADM

Off-diagonal elements (use diagonality in Gegenbauer basis)

γ
gg,(0),D
N,k =

(−1)k(N + 1)!
N(k + 1)!

N∑
l=k

(−1)l
(
N

l

)(
l − 1
k − 1

)
(3 + 2l)l! (l + k + 2)!
(N + l + 3)! (l − 1)!

γ
gg,(0)
l,l

= CA

(
−4(2 + k)

N + 3
+

4(3 + 2k)
N + 2

− 6k
N + 1

+
2(1 − k)

N
− 2

N − k

)
e.g.

γ̂
gg ,D,(0)
N=5 = CA


181
35 −51

35 −109
210 − 26

105

0 21
5 −7

5 −1
2

0 0 14
5 −7

5

0 0 0 0

+
2
3
nf 14×4
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Validation of gluon ADM

The result we presented for γ gg ,(0),D
N,k can be compared against a

computation in yet another operator basis due to B. Geyer and friends
[Geyer, 1982, Blümlein et al., 1999] in which the gluon operators are written as

OGeyer
N,k = Fµ∆( ⃗D ·∆+∆ · D⃗)N−k( ⃗D ·∆−∆ · D⃗)k−1Fµ∆.

By transforming to the D basis (see e.g. [Moch and Van Thurenhout, 2021] for more
details) one can write an implicit relation between the anomalous
dimensions in the Geyer and derivative bases (for even N)

γ
gg ,(0)
N+1,N+1 +

N∑
k=0

1 − (−1)k

2
γ
(0),Geyer
N+1,k = (−1)N

N∑
l=0

(−1)l 2l
(
N

l

)
γ

gg ,D,(0)
l+1,1 .

It was checked that our result obeys this consistency relation.
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Conclusions and outlook

Scale dependence of non-perturbative parton distributions is set by the
anomalous dimensions of composite operators
For exclusive processes, there is mixing with total-derivative operators
which complicates the extraction of the anomalous dimensions
Choosing a convenient basis for the operator can simplify ones life

(a) Gegenbauer basis:
ADM diagonal at O(as) due to exact conformal symmetry at leading
order
Off-diagonal elements generated at higher orders due to conformal
symmetry breaking → conformal anomaly

(b) Derivative basis:
ADM non-diagonal already at O(as)
Using consistency relation, off-diagonal elements can be determined
from the diagonal elements + matrix elements, where the latter can be
computed using computer algebra methods
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Conclusions and outlook

In this talk: Explicit similarity transformation between these 2 bases for
leading-twist operators (quarks+gluons)

Generation of fixed moments for the 2-loop D-basis anomalous
dimensions beyond leading color
→ full analytic structure would be valuable for higher order
computation! (in progress)
Independent validation of the conformal anomaly using leading-color
anomalous dimensions in the D-basis

Leads to representation of the anomaly in terms of sums which can be
efficiently evaluated using modern computer algebra packages
1-loop validation done
For 2-loop validation: compute 3-loop leading-color ADM in D-basis
(TODO)

As application of the gluonic transformation: 1-loop off-diagonal
elements for γ̂gg ,D,(0)

→ Generalize to off-diagonal elements (γ qg , γ gq) + higher orders
(TODO)
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End1

Thank you for your attention!

1This work has been supported by grant K143451 of the National Research,
Development and Innovation Fund in Hungary.
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DIS

Assumptions:
Photon highly virtual, Q2 ≡ −q2 ≫ p2

s ≫ m2
p
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The DIS cross section

The physical cross section of DIS is proportional to

1
q4LµνW

µν

Here, Lµν represents the leptonic tensor and Wµν the hadronic one.
Lµν encodes the polarization information of the electrons and the
off-shell photon. Applying standard techniques it is easy to find that

Lµν =
1
2
Tr [/k

′
γµ/kγν ].

W µν encodes the information of the γ∗p+ → Γ process, the amplitude
of which is

M(γ∗p+ → Γ) ∼ ⟨Γ| Jµ
∣∣p+(p)〉

with
Jµ =

∑
f

Qf ψ̄f γµψf the electromagnetic current.
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The DIS hadronic tensor

The hadronic tensor appearing in the DIS cross section can then be written
as

Wµν =

∫
d4x e iq·x

〈
p+(p)

∣∣ Jµ(x)Jν(0) ∣∣p+(p)〉 .
Note that this is independent of the final states Γ.

Hence, the calculation of the hadronic tensor of DIS boils down to
calculating the product of two current operators.

The standard formalism to deal with this type of problem is the operator
product expansion (OPE).
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The OPE

The OPE was first introduced by Wilson [Wilson, 1969] and later proven in
perturbation theory by Zimmerman [Zimmermann, 1973].

The main idea is that the time-ordered product of two local operators J(x)
and J ′(y) can be expanded in a series of regular operators, multiplied by
functions (called Wilson coefficients) encoding the singularity of the
operator product as x = y

T J(x)J ′(y) =
∞∑
n=0

Cn(x − y)On

(x − y

2

)
.

To apply the OPE to the DIS hadronic tensor, we use the optical theorem
to relate the rate of γ∗p+ → Γ to the imaginary part of the forward
scattering rate γ∗p+ → γ∗p+:

Wµν = 2 ImTµν ,

Tµν = i

∫
d4x e iq·x

〈
p+(p)

∣∣ T Jµ(x)Jν(0)
∣∣p+(p)〉 .
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Application of the OPE to DIS

Tµν can be explicitly calculated as the forward matrix element for Compton
scattering, γ∗q → γ∗q (photon off-shell and no polarizations included).
This gives

Tµν ∼ −ū(p)
γµ(/p + /q)γν

(p + q)2
u(p).

As we are interested in the regime of large Q2, we expand the denominator
for Q2 ≫ p2

1
(p + q)2

= − 1
Q2

∑
n

(2p · q
Q2

)n
such that

Tµν ∼ 1
Q2 ū(p)γµ(/p + /q)γνu(p)

∑
n

(2p · q
Q2

)n
.
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Application of the OPE to DIS

The ingredients of the OPE, i.e. the Wilson coefficients and the operators,
can be read of from the momentum expansion in a relatively
straightforward manner:

Factors of pµ should come from factors of i∂µ from the operators,
acting on the external states
The dependence on the short-distance scale should be incorporated
into the Wilson coefficients

This implies that the Wilson coefficients for DIS will be of the following
form

Cµ1...µn ∼ 2n

Q2n+1 q
µ1...µn .
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Application of the OPE to DIS

For the extraction of the operators, it is customary to use a basis of
gauge-invariant operators, meaning that ordinary derivatives are replaced
by covariant ones

∂µ → Dµ = ∂µ − igsAµ.

Furthermore, the OPE is dominated by leading-twist operators, where
twist = dimension - spin. These operators are symmetric in the Lorentz
indices and traceless.

Hence, the operators appearing in the OPE for DIS are gauge-invariant
leading-twist spin-N operators (focus on flavor non-singlet operators in this
talk)

ONS
µ1...µN

= Sψ̄′γµ1Dµ2 ...DµN
ψ.
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PDFs and DIS

Finally, one has to consider the forward matrix element of these operators〈
p+(p)

∣∣Oµ1...µN

∣∣p+(p)〉 ∼ MN(Q) pµ1 . . . pµN
.

The functions MN are directly related to the parton distribution functions
(PDFs)

fq(x) ∼
∑
n

Im Mn

xn
,

which can be interpreted to give the probability to find a quark inside the
proton with momentum xp (0 ≤ x ≤ 1). They encode the longitudinal
momentum/polarization carried by partons within fast-moving hadrons.

Since the PDFs are defined in terms of hadronic states, they are
non-perturbative
⇒ Direct extraction from experimental data (see e.g. [Brock et al., 1995]) or
using lattice QCD (see e.g. [Alexandrou et al., 2020], [Ji et al., 2021], [Wang et al., 2021])
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Example of an inclusive process

Inclusive polarized Drell-Yan

Distributions: Transversity distributions (TDFs) hT (x , µ2
f )

[Ralston and Soper, 1979], [Artru and Mekhfi, 1990], [Jaffe and Ji, 1991], [Jaffe and Ji, 1992],

[Cortes et al., 1992]

⋄ Difference in probabilities of finding a parton in a transversly polarized
nucleon polarized parallel to the nucleon spin and an oppositely
polarized one

⋄ Studied e.g. by the STAR experiment at RHIC [?]
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Example of an exclusive process

Exclusive production of transversely polarized ρ-meson

Distributions: Transverse distribution amplitudes (DAs) ϕ(x , µ2
F )

[Lepage and Brodsky, 1980]

⋄ Measure parton distributions within mesons
⋄ Important input for e.g. LHCb [?]
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Some comments on FORCER

FORM [Vermaseren, 2000], [Kuipers et al., 2013] program for the reduction of
four-loop massless propagator-type integrals to master integrals
Parametric IBP reductions
Often possible to avoid explicit IBP reductions by reducing topologies
to simpler ones (1-loop integrals, triangle rule, ...) → Automatized!
Less diagrams for which actual IBP reductions are necessary, special
rules for these

More details can be found in the original paper [Ruijl et al., 2020].
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GPDs

F q ≡
∫

dz−

2π
eixχ

+z−
〈
p′
∣∣ψ(−z/2)γ+ψ(z/2) |p⟩ ∼ H(x , χ, t)ψ(p′)γ+ψ(p)

+ E (x , χ, t)ψ(p′)
iσ+ν∆̃ν

2mp
ψ(p)

+ higher twist∫
dx xNF q ∼ ψ(0)γ+DNψ(0)

see e.g. [Diehl, 2003]. Here χ is the skewedness

χ =
p+ − p

′+

p+ + p′+
.

For some four-vector v ≡ (v0, v1, v2, v3) light-cone coordinates are defined
as

v± =
1√
2
(v0 ± v3), v⃗ = (v1, v2).
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Characteristic polynomial in the D-basis

Here we derive the characteristic polynomial for the operators in the
derivative basis. For this, we start from the fact that the non-local
operators act as generating functions for local ones [Braun et al., 2017]

O(z1, z2) =
∑
k,m

zk1 z
m
2

k!m!
OD0,k,m.

Note that the local operators appearing in the right-hand side are already
written in the derivative basis. Using now the identity
[Van Thurenhout and Moch, 2022]

OD0,N−k,k = (−1)k
k∑

j=0

(−1)j
(
k

j

)
ODj ,N−j ,0

this can be rewritten in terms of operators with covariant derivatives acting
only on the ψ̄ field

O(z1, z2) =
N∑

k=0

k∑
j=0

(−1)j+k

(
k

j

)
zN−k
1 zk2

k! (N − k)!
OD

j,N−j,0.
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Characteristic polynomial in the D-basis

From the latter relation, the following two identities immediately follow

∂N1 O(z1, z2)|z1,2→0 = OD0,N,0,

∂N2 O(z1, z2)|z1,2→0 =
N∑
i=0

(−1)i
(
N

i

)
ODN−i ,i ,0.

To determine the characteristic polynomial, we first consider the spin-two
case, for which we only have two local operators {OD1,0,0,OD0,1,0}. Using the
identities just presented we find

∂1O(z1, z2)|z1,2→0 = OD0,1,0,
∂2O(z1, z2)|z1,2→0 = OD1,0,0 −OD0,1,0

and hence, upon inversion,

OD1,0,0 = (∂1 + ∂2)O(z1, z2)|z1,2→0,

OD0,1,0 = ∂1O(z1, z2)|z1,2→0.
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Characteristic polynomial in the D-basis

This implies that

PD1,0(z1, z2) = z1 + z2,

PD0,1(z1, z2) = z1.

These polynomials are homogeneous with

(z1∂1 + z2∂2 − N − k)PDN,k(z1, z2) = 0.

Here N, k ∈ {0, 1} and N + k = 1 represents the total number of
derivatives. The above example can easily be generalized to higher-spin
operators and we find

PDN,k(z1, z2) = zk1 (z1 + z2)
N .

This is a homogeneous polynomial of degree N + k , which is the total
number of derivatives,

(z1∂1 + z2∂2 − N − k)PDN,k(z1, z2) = 0.
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Characteristic polynomial in the D-basis

Hence we can conclude that the local operators in the derivative basis can
be derived from the non-local one as

ODN,k,0 = ∂k1 (∂1 + ∂2)
NO(z1, z2)|z1,2→0.

The equivalent relation for the operators with covariant derivatives acting
on the ψ field reads

ODN,0,k = ∂k2 (∂1 + ∂2)
NO(z1, z2)|z1,2→0.
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Subleading color expressions
Diagonal:

γN,N = CF

(
CF −

CA

2

)(
17

3
−

8

(N + 1)3
+

8(−1)N

(N + 1)3
+

20

3

1

(N + 1)2
+

8(−1)N

(N + 1)2
+

212

9

1

N + 1
−

8

(N + 2)3

−
8(−1)N

(N + 2)3
+

20

3

1

(N + 2)2
−

8(−1)N

(N + 2)2
−

748

9

1

N + 2
+ 16S−3(N) −

16S−2(N)

N + 1
−

16S−2(N)

N + 2

−
536

9
S1(N) +

88

3
S2(N) − 16S3(N) − 32S1,−2(N)

)

Next-to-diagonal:

γ
D,(1)
N,N−1

∣∣∣∣
SLC

= CF

(
CF −

CA

2

)(
268

9
−

34

3

1

N
+

4(−1)N

N
+

4

N2
−

4(−1)N

N2
+

160

3

1

N + 1
−

8(−1)N

N + 1
−

778

9

1

N + 2

+
4(−1)N

N + 2
+

32

3

1

(N + 2)2
−

4(−1)N

(N + 2)2
−

8

(N + 2)3
−

8(−1)N

(N + 2)3
+ 16S−2(N) −

16S−2(N)

N + 2

)

Last column:

γ
D,(1)
N,0

∣∣∣∣
SLC

= CF

(
CF −

CA

2

){ 1

N + 1

(
136

3
+ 16S1(N)

)
+

1

(N + 2)2

(
20

3
+ 8S1(N)

)

+
1

N + 2

(
−

676

9
+

20

3
S1(N) − 8S2(N)

)
−

8

N2
S1(N) +

1

N

(
268

9
−

68

3
S1(N) + 8S2(N)

)}
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