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® direct access to the actual transitions difficult both in theory and experiment

® universality and analytic structure near 2nd-order transitions can yield powerful constraints

— can this be leveraged for our understanding of the phase diagram?



OUTLINE

® Yang-Lee edge singularities and 2nd order phase transitions
® medium-induced mixing and critical modes in QCD

® the Columbia plot and YLEs



YANG-LEE EDGE SINGULARITIES &
2ND ORDER PHASE TRANSITIONS



LEE-YANG THEORY

phase structure <€—Pp analytic structure in the complex plane

[Yang, Lee (1952)]

Consider a system of NV atoms with

® a finite size and a hard core (short-range repulsion)
® finite interaction range (required for well-defined thermodynamic limit)

® the interaction is nowhere — oo (potential is bounded from below)

The grand canonical partition function is a polynomial of degree N in a finite volume V,

fugacity z ~ e,
u: chemical potential, magnetic field, source,...

! .

N
Z,=Y Z=[](z-z)
=1

/ =1

canonical partition function Yang-Lee zeros
with 1 particles



LEE-YANG THEOREMS

Given these assumptions, Lee and Yang have proven two theorems:

® For all z > 0 the free energy density,
1
f(T,z2) =—T lm — InZ(7, )
Vooo V

is a continuous, monotonically increasing function of z. The limit is independent of
the shape of V.

® [f in a region R in the complex z-plane Zy, is free of zeros, then all thermodynamic
quantities are analytic functions of z in R for V — oo

[Yang, Lee (1952)]

At a phase transition thermodynamic functions can't be analytic

® Lee-Yang zeros are poles of the free energy
® For V — oo they coalesce into branch cuts in the complex z-plane

® The branch points (ends of the cuts) are called Yang-Lee edge singularities (YLE)

—P Lee-Yang zeros/cuts & YLEs encode phase structure



YANG-LEE EDGE SINGULARITY

Example: analytic structure of the free energy density of the Id Ising model, z = 2"
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Lee-Yang zeros (N=50)
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® no thermal phase transition in |d Ising: YLE never touches the real, positive axis

® zeros/cut on the unit circle/at purely imaginary h: Lee-Yang circle theorem

All zeros/cuts/YLEs are at imaginary magnetic fields

® rigorously proven for ferromagnetic spin-1/2 systems and O(N = 1,2,3,00)
® systematic results suggest that it holds for all N

[Lee,Yang (1952); Simon, Griffith (1972); Dunlop, Newman (1975); Lieb, Sokal (1981); Kurtze, Fisher (1978); Johnson, FR, Skokov (2020 & 2023)]



YLE & PHASE TRANSITIONS

Phase transition can be understood from the location of the YLE:

r ~
no phase transition 2nd order transition | st order transition
YLE in the complex plane YLE pinches real axis cut cuts real axis
Imz 4 Imz 4 Imz 4
> >
Rez Rez Rez
\ -

e YLE is a critical point itself: i¢p>-universality with independent critical exponents in the

complex plane [Fisher (1987)]

® "close enough" to the real axis, the location of the YLE is also universal
[Johnson, FR, Skokov (2020-2023)]




YLE & THE CRITICAL ENDPOINT

Consider system with a CEP at (7(~gp, #cpp) in the complex y plane

15008 12300 ]
1000} ]

% 5002— 1

= - _J=120 T=27.46

_ 0 e~ |

@ [ — ]

3 [

E  _s00f ]
-1000f :
—1500F §

0 200 400 600 800

Re[us] [MeV]

® I'=Tcgp: MyLg = Hcpp E R

® T'>Tcpp: My €C

[Mukherjee, FR, Skokov (2021)]

At i = 0 the YLE is the nearest singularity

determines radius of convergence
for expansions around y = 0

CEP inaccessible by Taylor expansions at y = 0!
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IDENTIFYING THE YLE

YLE is a branch point of the free energy as a function of a complex thermodynamic variable z, e.g.,

. It is obtained from the effective effective action as
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THE CHIRAL PHASE TRANSITION

in the (7, up) plane
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THE CHIRAL PHASE TRANSITION

in the (7, Re pg, Im ug) plane
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THE CHIRAL PHASE TRANSITION

in the (T, pug, m, ;) plane




THE CHIRAL PHASE TRANSITION

in the (T, m;,m, ;) plane
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THE CHIRAL PHASE TRANSITION

in the (Imm,_;, m_,Rem, ;) plane
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MANY FACES OF THE PHASE TRANSITION

T 4

Imm,, 4

Yang-Lee edge singularity
/’\

YLE

— a |ot of additional information from different directions, including the complex plane

use this to learn something about the physical directions (and vice versa)!



MEDIUM-INDUCED MIXING
& CRITICAL MODES IN QCD

[Haensch, FR, von Smekal, arXiv:2308.16244]
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QCD PARTITION FUNCTION

Consider QCD in Euclidean spacetime, D,=o0,—igA, T
F&T%=[D,D,)

i 1
K = l//(}/MDM + M + }’Oﬂ)l//+ ZF awE {rprt =24,

Since quarks enter quadratically, they can be integrated in the partition function of QCD,

7 = [S/Zd;e‘S[q’] = JQZA e 17 det M(A)

. . O =(A,y,p)
The Dirac operator is

_ 0
M =y"D,+M+y'u

It enters the effective action,

D] =sup{J J-CI)—an[J]},

J

at finite 7T as:

3
Indet /Z = TZ { (CZZ 1;3 In det [iy()(yn — gAy — i,u) + i;/j(pj — gAj) + M]
T
\

nesz

fermionic Matsubara frequencies
v,=2n+ 1)=T



THE QUARK DETERMINANT

The quark determinant det (}/”DM + M + }/O,u> is modified through interactions. This gives rise to
three crucial contributions regarding the phase structure:

(1) quark-scattering in the scalar-pseudoscalar channel

— with T% = (1,i7°7)®
2 . 2
~ ~ T y)
[Braun, Leonhardt, Pospiech (2019)]
25 | I I I I | |
At not too large density this channel becomes o LT M T SR = Ay e (VoA — (VA

- == (CSC) wm = (S+P)2 == (V+A), (V=A)L = (v—apd ]

resonant and gives rise to a nonzero chiral

1.5 -

condensate: chiral symmetry breaking ?
=

6~ (Py) <

<

— constituent quark mass M = m, + h,6

fA

current mass spontaneously
generated mass




THE QUARK DETERMINANT

The quark determinant det (}/”Dﬂ + M + }/O,u) is modified through interactions. This gives rise to
three crucial contributions regarding the phase structure:

(2) quark-scattering in the vector channel

T — X

ay ~ T )

Finite density is equivalent to a condensate in this
channel,

—idy ~ (Wy’w) = n,

\

quark density

— shifted chemical potential 4 — u + ih @,

short-distance repulsion implies imaginary quark-
omega coupling i/, and imaginary omega

condensate @

density channel coupling A,/(p%)

with T% = y“

[Fukushima, Horak, Pawlowski,Wink, Zelle

(2023)]
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THE QUARK DETERMINANT

The quark determinant det (}/”Dﬂ + M + }/O,u) is modified through interactions. This gives rise to

three crucial contributions regarding the phase structure:

Z(3) center symmetry of SU(3) Yang-Mills theory is
explicitly broken by dynamical quarks and spontaneously
by deconfinement. "Order parameter":

1
L =— < (trP
(i P)

C

with the temporal Wilson line

.

P(xX) = Pexp [ig

(3) the Polyakov loop

0.35

0.05 |

dxy Ay(xg, X )]

[Bazavov, Petreczky (2013)]
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L < 1 can be described by a static temporal gluon condensate A, = (A,) # 0

1 o
c
[Braun, Gies, Pawlowski (2007)]

—» covariant derivative in A, background: D, — D, — igA,



SADDLE POINT EXPANSION

All these background fields are obtained by solving quantum equations of motion,

ST[®]
5(o, wo, Ag)

—® do a saddle-point expansion around the ground state ® = (&, @, AO)

The ground state quark determinant is

T 7 d3p . e — . — — _
% Indet # = TZ J o) trln[l}/o(vn — gAp+ h, @y — l,bt) +iy-p+m,+h, 0]
nez
d’p o _ o N
= — 2TNfJ lnll +N.L e~ (EO)—IIT N.L e~ 2ELG) =T 4 e—?)(Ep(G)—,u)/T]
(27)?

+In [1 + N, Le BT LN [ e=2ELHIT 4 e-3<Ep<5>+ﬂ>/T] } quark energy
E5) = \/132 +m, + h; 6
effective chemical potential
c =0+ 00 d=pu+ih,d,
—P consider fluctuations @y = @y + owy Polyakov anti-loop
Ay = A+ 84, L= Ni (tr PT)

C




MEDIUM-INDUCED MIXING

The saddle point expansion of the QCD quark determinant reveals linear couplings (= mixing)
between effective degrees of freedom. Focus on zero-momentum contributions,

( re r@ e F(GZL)\

o oL
.................. 2 ) ) 2) Polyakov anti-loop
AN A= L

_ | .

2 2 2 2 L=—(urP’)
ry oy 07 T N,

—P nontrivial Hessian/mass matrix o ro. re e

("ol Tl CLL T LL)

Off-diagonal terms are in general nonzero at finite 7" and y!

— mixing of chiral condensate 5, density @, and Polyakov loops/A,,

® couplings linear in o vanish in the chiral limit (chiral symmetry)

® (@, is imaginary because of repulsive vector interaction, but 0w, must be real because
this is the steepest descent path/Lefshetz thimble!

e L+ALeRatu#0

o : : : : : (2) (2)
——p off-diagonal couplings involving @, are imaginary and F(G’wO,L)L * F(a,a)o,i)i

—P QCD has a non-Hermitian mass matrix at finite density!



THE CRITICAL MODE OF QCD

If QCD has a CEP at (7(-gp, #cpp), We need to find aYLE for real 7and u
= implicit function theorem: zero eigenvalue of Hessian H

® cigenvalue of H determines the curvature mass of the eigenmode y,

mczurv =fG)(_1<pO = 0’1_52 — O)

Euclidean propagator

® relevant for the phase transition is the spacelike screening mass,

G,(py=0,p>=-ms) =0

SCr

® smallest screening mass determines the (largest) correlation length & in the system,

hm <)((t7 551))((1’9 552)) ~ e_lfl_fﬂ/f, 5 =

|551—552|—’°° Mgy

® CEP:¢ - o0,ieemy, . =m,, =0

—P the eigenmode with zero eigenvalue is the critical mode

the critical mode of the CEP is a mixture of the chiral
condensate, the density/w, and the Polyakov loops/A,



THE CRITICAL MODE OF QCD

s it even relevant to know what the critical mode is?
® divergence of susceptibilities is insensitive to it,

°Q  0°Q . 0°Q -l 0°Q
dz,dz, 07,07,  07,00; y d¢h;0z,,

EoM

—P static critical physics are insensitive to the nature of the critical mode

But in-medium mixing is a general feature that needs to be taken into account for a consistent
description of QCD

— physical degrees of freedom are mixtures
Furthermore, the dynamic critical behavior depends crucially on the nature of the critical mode

® dynamic universality not only determined by symmetry and dimensionality, but by all slow
modes in the system and whether or not they are conserved [Halperin, Hohenberg (1977)]

® mixing between the chiral condensate and the density has been recognized before in
nuclear matter (e.g. [Wolf, Friman, Soyeur (1998)]). Crucially, the density is conserved

—® dynamic universality of CEP is model B,not A [Son, Stephanov (2004)]

® can the admixture of A, lead to different dynamic universal behavior?



THE HESSIAN AND ¢ % -SYMMETRY

The mass matrix of QCD is non-Hermitian at finite u. This is related to the breaking of charge
conjugation symmetry & ant finite u

e vector fields change sign under charge conjugation: €w, = — w,, €Ay = — Ay, GL = L
® y#0leadsto L # L

—» mixing reflects € breaking and renders H non-Hermitian

However, the system remains invariant under charge + complex conjugation, € % -symmetry

_ —» GCAH=H
KL =L

The Hessian obeys the relation

H = CH*C [Nishimura, Ogilvie, Pangeni (2014)]
with an orthogonal matrix C. This implies that H and H* share the same eigenvalues,

det(H — Al) = det(CH*C — A1) = det[C(H* — 11)C] = det C*det(H* — A1) = det(H* — AI)

— all eigenvalues of H are either real or come in complex-conjugate pairs



EXAMPLE: PQM MODEL

Simplest model with the basic features of the QCD quark determinant: Polyakov-Quark-Meson
model (PQM) in mean-field approximation

p
SpoM = J dx [d3x {l/_/[)/'”aﬂ + 70 + th,wy+ 1Ay + h, 6]1// <+<— N; = 2 quark contribution
0
A |

_|__(0-2 — y2>2 —jo + Ema) @, <+ mean-field meson potential V(o, )

(T 7 b33 73y bac Z(3)s ' i [
_ 2 _4 ymmetric Polyakov loop potential U(L, L)
2 LL (L +L ) T 4 (LL) from [Ratti, Thaler, Weise (2006)]

This yields the effective potential,

_ _ T _
Q.. L. [) = Vio,) + UL.L) ~ [111 det (o, 0y, L, L) + In det /ﬂvac(a)]

/ \

same as for the saddle vacuum contribution;
point expansion above with dim. regularization

hto* h’o?
= N,N.—>—In =2
7782 T\ 4A2

I hi del,
We solve this mode 50

5(o,wy, L,L)

0,

and study the eigenvalues of the Hessian in the vicinity of the CEP at finite 7 and u



MASS MATRIX

The Hessian in terms of Polyakov loops cannot really be interpreted as a mass-matrix, because they
aren't fields. We therefore parametrize them in terms of "eigenvalue fields"

1 lag as 3iag
L= 3 exp 2 cos o7 + exp| —

C —

¢ - 1 _la8 a3 31618
L =—exp 2cos| — | +exp
3 2\/3T 2T 24/3T

e L #L € R at u # 0 implies a nonzero ag € IR

® the Hessian is then

o2 of of of
e e, og, of,
o2, o2, of, of,
02, a2, of, o,

® G-symmetry breaking is also reflected in imaginary off-diagonal elements involving ag



PQM MODEL WITHOUT o,

Let's first ignore the @, and the vacuum term for simplicity. Hence, H has three eigenvalues H , ;.

Go to y = pcpp and consider temperatures around 7gp :

o
>
)
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® one real eigenvalue H; ( — Q2 = m? without mixing)

e complex conjugate eigenvalue pair H, ; (— Q.

Cl3’8 Clg,

A = Im H1
5000} im H,
| Im Hs
o
5000}
04  -02 00 02
(T — Tepp)/ Tepp
35000 < .
300000 e Hs
\\ — 2
25000} Sa Mo
without mixing) _ 20000} ]
§ 15000} N e

® /1, defines the critical mode: mixture of a3, 6 and ag

® system seems to avoid complex critical mode

maybe there is a no-go theorem!?
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PQM MODEL WITH o,

Now consider the full model, including vacuum term and a repulsive w,. The four eigenvalues are

19000 T T T } 220000} é
[ — Hq ] [
10000} ---my2? | 210000} H,
N | Hs
& 5000} RN . (\; 200 000E
> | S © 190000}
=, Of > ' =, [
| Ta PR 180000}
_5000} I { 170000}
[ N ] [ .
P SO 160000f e
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
(T-T)/T, (T-T)/T,
e ® 3| eigenvalues are real around the CEP
[ — H ————————— ] o, o
055000 m4 , .- { @ H, defines the critical mode
T T T My ! ]
_ 630 000;’ i n ] e 9(026) = ma2 becomes negative, physically irrelevant

[MeV?

645000 . --~ i / ® complex eigenvalues still present, e.g., at larger T
640000} {
635000/ the critical mode is a mixture of o, w,,

S D 3 L and L at finite T and u
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

(T=T.)IT,




COMPLEX EIGENVALUES

Eigenvalues of mass matrix related to screening masses of eigenmodes

() x(0)) CX ~ eV
Complex eigenvalues,
VH; = mp+1my
N\ A~

A\
lead to spatially modulated correlations \/ V

r—00 My

(N x0) — ~e”

" sin(m; r)

Complex eigenvalues imply the existence of disorder lines in the phase diagram, which separate
regions with spatial modulations from regions without.

This appears to be a common feature of systems with ¢-symmetry breaking and a competition
between repulsive and attractive interactions

300

PNJL Walecka

0 2 0 5 10 15 20 25 30

for detailed discussions see: H
[Nishimura, Ogilvie, Pangeni (2014-2017); Schindler, Schindler, Medina, Ogilvie (2020); Schindler, Schindler, Ogilvie (2021)]



THE COLUMBIA PLOT AND
EDGE SINGULARITIES

[Herl, FR, Schmidt, von Smekal (in preparation)]
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THE COLUMBIA PLOT

How does the order of the chiral phase transition depend on the quark mass!?

® distinct mass hierarchy of quarks (2z7. ~ 1 GeV)

— what if u, d were even lighter?

UB), X UQB)r~ SUQ3)y xSUB), x U(l)y, x U(1),
l axial anomaly
SUB)y X SUB3), x U(1)y, X Z(3),

any "remnants” at | chubby strange quark
physical quark masses!? SU2)y X SUR2), X U(1)y X Z(3)4

® relevant flavor symmetry:

—

~ 0(4) l light quark masses
SUQ2)y, x U(l)y, X Z(3),




THE COLUMBIA PLOT

Expectation from Pisarski & Wilczek (1983) (perturbative RG analysis of a linear sigma model):

e Ny =3 chiral quarks: Ist order transition

e N; =12 chiral quarks: depends on the fate of the axial anomaly

Nonperturbative RG analysis: [Resch, FR, Schaefer (2017)]

without anomaly

p [MeV]
300 ‘ Lst

with anomaly

p [MeV]

300

200 200
100 100
0 Crossover 0
00
m [MeV] mx [MeV] 100

MK [MGV]
150 0

p suggests very small Ist order region in the 3-flavor chiral limit
(triggered by bosonic fluctuations - much larger in mean-field)

Also: no stable fixed point from recent FRG analysis in the 3-flavor chiral limit [Fejos (2022)]



THE COLUMBIA PLOT

Ne =2 0
O(4)
Ms | ve)Lov@R/ U@y Z2 17
® Physical point
Could there even be a 2nd order .
transition in the 3-flavor chiral limit? «
N
=
Crossover
? [Cuteri, Philipsen, Sciara (2021)]

0 may,d

® generic prediction of mean-field studies of models without 't Hooft determinant
[e.g. Resch, FR, Schaefer (2021)]

e fixed-point analyses: only possible if U(1), is restored at T,.? [Fejos (2022), Kousvos and
Stergiou (2023)]

® cannot be excluded from lattice computations [Aarts et al. (2023) & references therein]

e detailed lattice study suggests 2nd order transition even for N, < 6 massless quarks
[Cuteri, Philipsen, Sciara (2021)]

® suggested by recent DSE study [Bernhardt, Fischer (2023)]

Can YLEs help us here?



EXTRAPOLATIONS USING LATTICE DATA

Available lattice data still far away from any chiral limit

—P extrapolations are necessary

But how to extrapolate!?

® |f the data reaches into the scaling region, one can exploit universality

® this is difficult, because scaling regions are generically very small, e.g.,

5.5

[FR € fQCD collaboration (2023)]

50F

w 4.5

4.0 -

fRG-QCD: leading scaling
I fRG-QCD: leading+subleading scaling
------- fRG-QCD: fixed-point value

35 L .

0.01 0.1 1 10
m, [MeV]

scaling region for m_ < 5 MeV
at physical strange quark mass

even with a lot of precise data, for
m_ 2 25 MeVno signs of scaling



YLE AND THE COLUMBIA PLOT

Imm,, 4
T=Tl,
® consider quark mass as thermodynamic control parameter branch cut surface
(acts like magnetic field in O(N) models)
v
. . R
® search for 2nd order transition at some (7, m,) #
® YLE in the complex-mass planeat 7" > T,
YLE
There are in general 3 different scenarios:
ms,phys mg

Imm

® 2nd order transition at zero mass
® no further restriction on the transition

® requires reconstruction + extrapolation for various 7 in the
continuum limit

O\ Rem

scaling region



YLE AND THE COLUMBIA PLOT

Imm,, 4

T=T,|
ms,phys

® consider quark mass as thermodynamic control parameter branch cut surface

(acts like magnetic field in O(/N) models

g
Rem, ,

® search for 2nd order transition at some (7., m,.)

® YLE in the complex-mass planeat 7" > T,
YLE

There are in general 3 different scenarios:

ms,phys mg

® 2nd order transition at zero mass
® | ee-Yang circle theorem applies
® YLE must lie on the imaginary mass axis

® also applies to Yang-Lee zeros

infer that transition must be at zero mass without any

extrapolation, neither to small 7, m or the continuum

® reconstruction of YLE still necessary



YLE AND THE COLUMBIA PLOT

® consider quark mass as thermodynamic control parameter
(acts like magnetic field in O(/N) models

® search for 2nd order transition at some (7., m,.)

® YLE in the complex-mass planeat 7" > T,

There are in general 3 different scenarios:

magnetic field is nonlinear

continuum limit

Imm,, 4

® 2nd order transition at nonzero mass

branch cut surface

g
Rem, ,

YLE

ms,phys mg

® circle theorem irrelevant, as map from m to critical

® requires reconstruction + extrapolation for various 7' in the



RECONSTRUCTING THE YLE

Adapt the strategy used for finite p in [Dimopoulos et al. (2022)] to finite m:

= Multi-point Padé reconstruction

® assume that analytic structure of the free energy is captured by a rational function

P,,(2) 2o il

%Rm — =
/= 1+0,) 1+% b

® consider f(z) at N nodes z; (k = 1....,N) and assume we know its derivatives up to order
L, at each node

N
—p wecanfixn+m+1= Z (L, + 1) Padé coefficients
k=1

P,(z) — f(z) Q,(z) = f(z))
P, (z)) — f'(z) O,(z)) — f(zy) O, (z)) = f(2))

P, (zy) — f(zy) O (zy) = f(zy)
P, (zy) — f(zy) On(zy) — f(zy) Onlzy) = f(2y)



RECONSTRUCTING THE YLE

® rational functions can only have isolated poles (zeros of the denominator)

® branch cuts are indicated by arcs of poles, accumulating at branch points for large N,
[Stahl (1997)]

® identify the YLE as the closest pole to the real axis that is stable under variation of the
Pade order [m/n]

Test this in a simple N; = 2 QM model (PQM with A, = 0), where parameters can be tuned such
that scenario (B) and (C) are realized.
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® Use 6 nodes for the chiral susceptibility X, ~ S

® 2 known derivatives at each node

® susceptibility is an even function of m

—» use [16/18] Padé in m



SCENARIO C

In this model: Ising transition at m > 0
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—P reconstruction works well, but extrapolation is required if data at smaller 7 not available



SCENARIOB

In this model: O(4) phase transition at m = 0
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— reconstruction works well, no extrapolation required to infer m,



TOWARDS THE APPLICATION TO QCD

So far, we did a successful proof-of-principle based on a simple model.
We are currently working on:

® improving the reconstruction, e.g., using conformal Pade [Basar (2021)]

® a conjecture regarding the application of the Lee-Yang circle theorem to the
SU(3) X SU(3) transition relevant for the 3-flavor chiral limit

® applying our idea to lattice data

Note that if the circle theorem holds also in the 3-flavor chiral limit, our method can be very
powerful as there is no need for any extrapolation

In any case, analysis of YLEs in the complex mass plane will add another layer of useful
information to this unsolved problem



SUMMARY

Analytic structure in the complex plane can

shed new light onto open problems in QCD

We demonstrated this on two examples:

® we identified the critical mode of the CEP based on in-medium mixing and the
resulting branch point

— it is a mixture of the chiral condensate, the density and the Polyakov loops

® we proposed a new method to study the chiral phase transition based on the
YLE in the complex mass plane

the circle theorem can provide powerful constraints, circumventing the
need for extrapolations
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