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Prelude

Classical theory of chaos:
Lyapunov exponents and KS entropy
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Lyapunov exponents - KS entropy

m A constant growth rate of the observable entropy, i.e. the entropy measured after
coarse graining, is a characteristic feature of chaotic dynamical systems.

m Consider two evolutions of such a system starting from slightly different initial conditions

(X(ty), p(ty)) and (X(t,) + 6x(t,), p(t,) + Op(t,)). A dynamical system is chaotic if the
distance in phase space between the two systems grows exponentially: X(t)
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m 4 is called the (largest) Lyapunov exponent. x(t)+x(1)

® More generally, one can construct a spectrum of modes around the original trajectory in
phase space and obtain the associated spectrum of Lyapunov exponents A,. The rate of

growth of the coarse grained entropy is known as the Kolmogorov-Sinai (KS) entropy h«.
It is given by

dS/dt = hyg= ) J
A4.>0
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Thermalization of a chaotic system

Depending on the size of initial fluctuations, S Relaxation to equilibrium

after some initial period, the measurable e A

entropy of the system grows linearly with Y S thermal
time: Iy '

. 1S
After a time 7, = S.//ikg, the entropy of 3¢ - h ks

the system approaches the value of the
entropy in thermal equilibrium, and further

growth is impossible because the volume of
accessible phase space at fixed total energy : :
s finite. \/ : :
This behavior can be calculated numerically .
in the classical limit of field theory. initial linear equilibrium phase

Fluctuations: initial state dependent
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We present numerical evidence that the real-time Hamiltonian dynamics of SU(2) gauge theory 10 :

on a spatial lattice exhibits deterministic chaos in the semiclassical limit. We determine the largest |
Lyapunov exponent of the gauge field as a function of energy density, and derive a nonperturbative U
expression for the thermalization time.

hsuy(E)a = 0. 17g2Ea

;"r‘ T T T T T T T T T T T T C; 7
i Com
Physics Letters B 298 (1993) 257-262 ] e
North-Holland '/_,'l’
— I ot
C r rd
= r A
Lyapunov exponent of classical SU (3) gauge theory o e
| A
C. Gong o
Physics Department, P.O. Box 90303, Duke University, Durham, NC 27708 0305, USA 0 | ﬁ)/
B SR R l_ ! [ Lo i l i
O I 2 ) 1

Received 28 September 1992

The classical SU(3) gauge theery is shown to be deterministic chaotic. Its largest Lyapunov exponent is determined. from which
a short time scale of thermalization of a pure gluen systemn is estimated, The connection to gluon damping rate is discussed.
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Lyapunov Spectrum SU(2)

Number of unstable modes with positive
Lyapunov exponents = number of dynamical
modes of the lattice gauge theory

0.30"
0.25%
0.20}
< 0.15]
0.10}
0.05}

0.00"

Sum of all positive Lyapunov exponents
exhibits volume growth: Sks is extensive
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How chaotic is QCD?

Maldacena, Shenker, and Stanford [JHEP 08 (2016) 106] argued that there is an

upper bound on Lyapunov exponents: A < 2zT, where T is the temperature reached
after equilibration.

Our numerical simulations for the SU(3) gauge theory found [PRD 52 (1995) 1260]
Ao = 0.53g°T
Which saturates the MSS bound when o, = g?ldr ~ 1.

Thermalization in QCD at realistic coupling may thus be about three times slower
than at infinitely strong coupling as realized in BH formation or AdS/CFT.

But this still gives a rather short thermalization time around 1 fm/c.

Next challenge: Compute entropy growth in the quantum lattice gauge theory.
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Chaos and quantization

Full chaos implies small perturbations around classical solutions generally grow exponentially
and that their eigenvalue spectrum contains modes with imaginary frequencies.

At the quantum level, these modes correspond to tachyons which invalidate canonical
quantization.

This problem is often avoided by dynamical mass generation [S.G. Matinyan & BM, PRL 78
(1997) 2515]. In simple cases, analytical solutions can be found involving spontaneous
symmetry breaking (e.g. abelian Higgs model).

In the case of nonabelian gauge theories the mechanism is confinement, and no analytical
approach is known that avoids the appearance not tachyonic modes around any classical
field configuration.

Famous example: instability of a uniform chromomagnetic field (Savvidy 1977). Attempts to
construct a nonperturbative ground state (“Copenhagen vacuum?”) ultimately failed.

Euclidean lattice gauge theory provides a successful approach for the ground state and
thermal equilibrium. Dynamics of highly excited state requires a different approach.



Quantum Chaos

SU(2) Lattice Gauge Theory
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Thermalization

Current description of rapid thermalization uses either semiclassical approximations (kinetic theory) or
holographic technigques: One method neglects potentially important quantum effects, the other method
describes a quantum field theory that differs from QCD. Can we do better?

How does apparent thermalization happen in a closed quantum system, when energy is conserved?
Time evolution of local operator expectation value in terms of energy eigenstates is:

(0)(t) = Tr[Op(t)] = ) (n]O|m)(m|p(0)|n)e'En—Em)t

n,m
After some time?

(O)mc(£) E = Tr(Hp)

Microcanonical ensemble average
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Eigenstate Thermalization Hypothesis (ETH)

For most non-integrable systems, matrix elements of “typical” local operators for “typical” energy
eigenstates can be represented as

—S(E)/2
(n|O|m) = (O)me(E)dpm + e 2 EV2 (B W) Ry E=(E,+E,)/2
Diagonal part close Correction suppressed Gaussian (?)
to microcanonical exponentially by random
ensemble average system size matrix
Spectral function decays with @
Deutsch, PRA 43, 2046 (1991) L. D’Alessio, Y. Kafri, A. Polkovnikov, M. Rigol,

Srednicki, PRE 50, 888 (1994) Adv. Phys. 65 (2016) 239 [1509.06411]




(D =
From ETH to Thermalization

For large systems and initial states with small energy spread, ETH leads to

(1) Long time average O = thermal expectation value {O); —> ergodic
(2) Fluctuations of (O)() around O are exponentially small in system size

(3) Quantum fluctuations ~ thermal fluctuations

(4) Real-time autocorrelation function
(n|O(t)0(0)|n) — (n|O(t)|n)(n|O(0)[n) ~ /alwe‘i“”teﬁ“’/zIf(E,w)\2

where f(E, w) is related to the spectral function (depending on operator O)

The system, when observed through O, behaves like a system in thermal equilibrium.

13



What must be demonstrated?

Fundamental ETH relation:  (n|O|m) = (O)me(E)0pm + e 2 EV/2 (B w)Rpm

Discretize the continuum theory on a spatial lattice, choose boundary conditions
Show that the diagonal part is exponentially close to the microcanonical average

Show that the off-diagonal part is a (Gaussian) random matrix

Show that the spectral function decays for large @

Consider “physical”, i.e. gauge invariant, multiplicatively renormalizable operators

Operators could be local or sufficiently smeared

Demonstrate RG behavior for several g(a) when a — 0, to establish the continuum limit

Demonstrate ETH for several system sizes for fixed g(a), to establish the infinite volume limit

14



(2+1)-D SU(2) Lattice Gauge Theory

2
2
Kogut-Susskind Hamiltonian: 1 = % Z(E?)Q > o Z (n)

links plaquettes

(n) = Te[U (n, 9)UT(n + §,2)U(n + 2,9)U(n, 2)]

EX U(n,j)] = —6,;T°U(n, j)
[Ef’, ES] — ifabCEf

Gauss’s law: Every vertex transforms
as a singlet for a state to be physical

Electric basis on links: gmrmpg)

E%jmrmg) =430+ 1)|imLmg) S.A. Chin et al.. PRD 31 (1985) 3201

Byrnes, Yamamoto, quant-ph/0510027
15



(2+1)-D SU(2) on Periodic Plaguette Chain

Each vertex has three links:
singlet is uniquely defined by

the j values on the three links

Matrix elements between
physical states (singlets)
expressed in 6/ symbols

(J1J2 3y

Klco, Stryker, Savage, 1908.06935

C b
J: initial
J: final
d a
juiagei) =[] (0 T (072 + D2Ja+ 1))
a=a,b,c,d a=1,2,3,4
Cdaon 2 V[ g 2 s \f Je ds da L[ Ja s g1
12 e J [\ 1/2 T3 Je [ 1/2 Jy Js [ 1/2 N Js
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SU(2) with jmaX=1/2 “”__:_pl_:_fz_:_ ]_93_:_.:. — e lll
can be mapped onto spin chain I.(pl) IUX
1
[X. Yao, PRD 108 (2023) L031504] _ -
Project onto momentum eigenstates - T T T T T~
—N/2 < k < N/2 (N plaguettes) I.(Pz) I(—0-5) 6y
_ | S
; : ___:__ e, TH

all = JZUzUz+1+h ZU + hy Z (—0.5)(Fi-1Foi1)/2 ¥ e

J —

—3&92/16, hz — 3&92/8, hx — —2/(CLQQ>
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Plaquette Chain with ;.. = 1/2: Spectrum

Restricted gap ratio distribution
Look at matrix elements in 3 energy windows Jap

around peak with ca. 2000 eigenstates each min|d,, 04 1]
0 < ry = <1
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(D = S
Plaquette Chain with ;.. = 1/2: Diagonal Part

Consider 1-plaquette and 2-plaquette operators with ag2 = 1.2

n—+10
1
Proxy for microcanonical ensemble: Ai(n) = (n|O04fn) — o > (m|O;m)
m=n—10
: .--—"\\‘ 1-plaquette
10 T
6% 10
1% 1073 Exponential decay with /
3x 1072 T e, 2-plaquette system size for N > 16
42x107
IX. Yao, PRD 108 (2023) L031504]

11 12 13 14 15 16 17 18 19
N
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Jmax Cutoff Dependence and Convergence
Energy eigenvalues on N = 3 chain vs. J, ., Energy level spectrum for different jmax
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Take J..., = 3.5, only use states
within 5% error from asymptotic

eigenenergy values Ebner, BM, Schéfer, Seidl, Yao, PRD 109 (2024) 014504

Select converged region 18 < E < 24




N = 3 Chain with j__

Nearest-neighbor level statistics exhibits

GOE characteristics at g2a = 0.8
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N =3 Chain with j .. = 7/2: Off-Diagonal Part

Off-diaaonal elements of H Spectral function at small (w| exhibits
agonal eiements o el
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Test GOE Behavior: N=3, .. = 7/2

Construct band matrix by dropping
deciphered matrix elements at time T

GOE measure AT

O =0' —Tr[0"]/d

2

Tr[(02)%])
(Tr[(Oz)%])

C

r_ |
A'__d
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(2+1)-D SU(2) on Honeycomb Lattice

On square lattice each vertex has four links and singlet is not unique

Solution: use honeycomb lattice

e

Y
N

0

> X

BM, X. Yao, PK

D 108 (2023) 094505

H., — g SIZZEQ

n 1=1

Hmag 9&2 2 Z‘

< J i ‘ ‘ ‘ ] ] > between physical states

= product of six 6j symbols
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ETH Tests for Honeycomb Lattice with ;.. = 1/2

Diagonal matrix element test for
local operators (1 and 2 plaquettes)

Off-diagonal matrix elements of H.

10_2 2nd moment
e Plateau
=10
£ Exp. Fall-off
107

108

0 5 10 15
W = EQ. — E_.«a
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Entanglement entropy

Entanglement entropy of subsystems first grows with size and then declines when the
subsystem exceeds half the size of the full system [D.N. Page, PRL 71 (1993) 3743].

Sy =Tru(psInpy)  with  py =Trzlyw) (yl

JiL" ]1R

—————— " Jyp. ]2R R
ULl : Ur}J

Ebner, BM, Schafer, Seidl, Yao, 2401.15184
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Page curve
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SEE versus Sih

-

I —
-« entanglement entropy -
8 "« thermal entropy
P K] & . \
L \,—

Sge(A) ~ min (Sy,(A), Sp(A))

USing

—1
T = [dSmC(E)]

dE
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Summary

We obtained extensive numerical evidence for ETH in (2+1)-dim. SU(2) lattice gauge theory.
Three cases studied by direct diagonalization of the KS Hamiltonian:

(1) long chain withj_.. = 1/2
(2) short chain with j. = 7/2 and fully converged spectrum

(3) 2D honeycomb with j_.. = 1/2

We found: » Wigner-Dyson level spacing statistics v/
o Clustering of diagonal matrix elements around micro canonical average v
« Random matrix behavior of off-diagonal matrix elements v/
 Transport peak in spectral function at small |w| v/

» Page curve for energy eigenstates v/
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Future Plans

There are many possible directions for future research, e.g.:
(1) (2+1)-D honeycomb with higher j_ ..
(2) (3+1)-D SU(2) on triamond lattice
(3) SU(3) gauge theory
(4) Include fermions

(5) Implementation on a quantum computer

Extent of further investigations will depend on availability of computing resources.

More efficient algorithms than full diagonalization of Hks must also be explored.
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