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Why study 7 > 0 QFT on the lattice?

Approximately thermal systems
e Cosmological history
e Supernovae, neutron star inspirals

e Heavy ion collision

Non-perturbative phenomena
e Near the QCD transition
e No clear separation of scales T ~ gT ~ g°T ~ Aqgcp ~ 1.0/(Rinstanton )

e There are also non-perturbative phenomena even at weak coupling

Interesting
e A number of well defined problems that remain unsolved

e Connections with many fields and methods of physics (stat mech,
condensed matter theory, EFTs, cosmology, heavy ion physics etc.)
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Finite-size scaling - away from transitions

Away from phase transitions
The free energy density f, = F, /L% has an infinite volume limit.

With open boundary conditions:
1
foo - ﬁ_ ~ 7f5[

With periodic boundary conditions:
fo —fine 't

Eg,inQCD: T <« T¢
foo = fi et

e Asymptotics determined by L = oo properties of the theory.

e f(L) ~ g(L) means lim o0 :35;((3 -1



The phase diagram of the Ising model in d > 2

Z = Z GB Z<’j> sisjth Xisi uniqueness
{si} i nﬂn-unilqueness
= — (M) = —
(s)=13{M=13—7%,
1 2 2 1 82 |0g Z uniqueness
x = T (M) = (M%) = 7558

1st order phase transition: non-unique infinite volume limit
e Different boundary conditions — different inf. vol. lim.

e With fixed boundary conditions (say periodic):

lim i =0# lim i =M
W 3 (9 =0 I im0 = Ms



1st ord nsitions

1st order transition: coexistence




Finite-size scaling at 1st or nsitions

1st order transition: coexistence
Model the probability distribution of the order parameter:

P(s) = L est? exp | — (5= Ms = xTH)’L?
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What happens when we heat water in a closed container?

Charles Cagniard de la Tour, 1822 — discovery of the critical point

vapor it

vapor

vapor

liquid

liquid v e
4] ] 8

Very little liguids: Lots of liquid: Intermediate region:
evaporates expands, absorbs vapor something interesting

At the critical point (2nd order transition): piiquid = Pvapor



Charles Cagniard de la Tour, 1822

https://edu.rsc.org/feature/supercritical-processing/2020235.article



https://edu.rsc.org/feature/supercritical-processing/2020235.article

2nd order transitions

2nd order transition: diverging correlation length

HEATING

size of density fluctuations ~ Ajgn — critical opalescence



Finite-size scaling - 2nd order transitions

Second order transition: diverging correlation length

Infinite volume:

£N‘t|7l/ XN|t|M{ t:(T_TC)/TC
=X~

If £ diverges, it will not fit in the box & — L:

X ~ 1V

3D Ising: v~ 124 v=063—>v/r~196<d=3
Rule of thumb:

(O) oo () ~ 77 — (O)r_7. (L) ~ 1P/
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Finally, crossovers

Crossovers

Close to a critical point, but not quite there (e.g. residual field hg)

Correlation length ¢ large, but finite

For L < £ behaves like a critical system

For L > £ hehaves like a system away from criticality

Summary
Susceptibility (variance) of the order parameter: (L, T = T.) ~ Lk

transition type

crossover
2nd order
1st order
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Universality classes and non-universal maps

e Types of d.o.f. (scalar, vector, tensor); symmetries; spatial

dimensions; interaction range determine the critical exponents and

the singular part of the free energy near 2nd order transitions

e The mapping of the variables in the different models is not universal

h
uniqueness

non-uniqueness

0 -— §

uniqueness

Pressure

Critical point
Meltifig
Liquid
Freezing :
Vaporizagion
Solid
Copdensation
Sublipfation —Triple point
Gas
Deposition
Temperature

Good textbooks covering finite-size scaling and criticality in more detail:
Goldenfeld; Binder & Heermann; M.N. Barber in Domb, Lebowitz Vol. 8.;
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The lattice regularization

- - "
Pl
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Tlﬁ

X
Integral over spacetime [ d*x(...) — sum over sites a* > (...)

Derivatives 9,,¢ — finite differences 1 (¢(x + i) — ¢(x))
¢0¢ — hopping % >°, (#(x — f)p(x )+ 6(x + A)d(x) - 2¢(x)?)

Momenta: |p| < 7/a natural cut-off (Brillouin zone)

Renormalization needed to make certain quantities finite as a — 0
Cut-off effects: (O) ,uice = (O) continuum + O(@”)
To get physical results, we need to perform:

e Continuum limit: a — 0

e Infinite volume (thermodynamic) limit: L[fm] — oo 14



Gauge symmetry and parallel transport

e Take N-component scalar (Dirac also works): ¢(x)(0 + m?)¢(x).
e It has a global symmetry: ¢(x) — A~1¢(x) where A € SU(3)

e We want to make it local A — A(x)

e Then ¢(x) and ¢(y) transform with a different matrix

e We introduce a parallel transporter U(Cx_y):

U(Cxﬁy) - /\(}/)_1 U(Cxﬂy)/\(x)

e Now U(Cy—y)od(x) transforms with A(y)

e Continuum FT: U(Cx—xtdx) =1 — A, dx" (Lie-algebra valued)

e Lattice FT: we use the parallel transporters (Lie-group valued)

e Exact gauge symmetry at finite lattice spacing (Renormalization!)

e Covariant derivatives: add parallel transporter to hopping terms

e Dynamics for the gauge fields: (traces of) closed loops in the action

e Gauge invariant observables: polynomials of ¢(x),
(b(X) U(Cx—>y)¢(y)v Tr( U(Cclosed loop))

15



The plaquette action

 J

F 3

e The simplest close loop is a 1X1 square.

e This gives the Wilson (or plaquette) gauge action.
1 1 —B 4 6
Sp = EEX:%: (17 NReTrUX,W> = mz:%;a Tr (Fuw Fuv)+0(2°%)

e The bare gauge coupling: 3 = 2N/g?
e Also need SU(3) invariant integral measure to define path path
integral (Haar-measure)

16



The continuum limit

=

Fig. 9-1 Making the lattice finer by tuning the coupling with the lattice

spacing so as 10 keep physics the same.

e Correlation function: <¢(6,T)¢(6,0)> ~ e~ (msa)(r/a) — g=(7/2)/(¢/2)

e m/MeV = fixed, a — 0 <> {/a — oo: 2nd order transition (RG FP)
in the lattice thy

e For non-abelian gauge thy, the FP is Gaussian (asymptotic freedom)

e In many parameter theories: line of constant physics: change bare
parameters such that IR quantities (e.g. mass ratios) are fixed while
a — 0, this def. how one has to approach the FP
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Symanzik improvement

e RG theory tells us that we can add irrelevant operators to the action

without changing the continuum limit.
e But the cut-off effects will be different

e By a clever choice of the irrelevant operators, they can be made
smaller

e Systematic (perturbative) approach: Symanzik

For pure gauge theory, just adding a 2X1 rectangular loop with a well
chosen coefficient improves cut-off effects drastically:

_|_

18



Finite temperature

Euclidean time: et = e=H7 and e5l?l — =5l

Path integral: periodic/antiperiodic BCs for bosons/fermions:
e Bosonic frequencies: w, = 2n7t T (PBC in time)

e Fermionic frequencies: w, = (2n+ 1)7 T (APBC in time)
On the lattice:

1
N, a
For fixed T, the continuum limit is taken by taking N, — oo

19



Phase transitions and finite-size scaling
Lattice field theory

Deconfinement in pure gauge theory

© N o Ok w =

The QCD crossover transition
The chemical potential
Taylor series in p

Imaginary chemical potential

Reweighting

20



Center symmetry and the Polyakov loop

Multiply links in a time slice with z* = exp (%)

e Center: commutes with all SU(3) group elements

Action and integral measure (is invariant, but the Polyakov loop is not:

Nr—1
1 T K
PX_NTr<UO U4(T,X)> — Z"P,

Order parameter for SSB of center symmetry

Related to confinement: (P) = e /T & (P) =0+ Fg =00 21



Scatter plot of the Polyakov loop near (.

T T T T T

0.1 1

0.1 1

Confined: red; Deconfined real: blue; Deconfined complex: green
A small 1/m: favors the blue sector
Plot from 2112.05454 22



What happens to center symmetry with quarks?

e Fix temporal gauge U,y = 1 (A = 0). You can do this for all, but
the last timeslice, where the (untraced) Polyakov loops remain.

e Further fix the Polyakov gauge, by diagonalizing the Polyakov loops:
P = diag(ei¢1, e/¢2’ e*/(¢1+¢2))

e In pure gauge theory we had three Polyakov sectors at:
P~ ¢y~ ¢y ~2m/3 ¢y~ Py =—21/3

e In a theory with fermions this change in the boundary conditions
shifts the Matsubara frequencies to:

2n+1+0)xT (2n+1+2/3)aT (2n+1-2/3)xT

e The magnitude of the lowest frequency (and so the quark
determinant) is largest for ¢ &~ ¢ ~ 0.

23



Symmetry breaking pattern for QCD with heavy quarks

SU(3) gauge theory | Ising model
symmetry Z3 2>
order parameter (P) (s)
explicit breaking 1/m h
symmetry restoration low T high T
TIA T

N

SU(3) gauge theory
with heavy quarks Am Ising model

y T

Ongoing research: locating the heavy critical mass
The critical mass is very large (m,; ~ O(5GeV))!
The deconfinement transition in SU(3) gauge theory is a weak first order

24



Simulating pure pure SU(3) gauge theory on the lattice

For concreteness, use the tree-level Symanzik improved gauge action

Sc = %Z Z (1—ReTr (ctPeyw + Cz(RiW + RXZJW)))

X p<v

F

i e A
C1 + 2 |Jr |
.‘_

e The plaquette action has O(a?) error

e By adding 2x1 rectangles, the O(a?) errors can be removed with
¢ =5/3 and ¢ = —1/12 (tree-level /classical improvement)

e In the interacting theory, however, O(g2a?) errors appear

B

B

25



Bc(N;) for pure glue

N=8
Mt fic = L 1 N=10
3 3.90812(7) = i “F} 2 ——
4 4.07252(13) = ) ; N:; 1%
5 4.19963(14) g - ; N1
6 4.31466(24) g . E v
8 45092(27) - . 5
10 4.6729(75) 2 L&
12 4.811(10) z Li %
16 5.037(16) = %

=

20 5.217(30) Z ;
24 5.3690(27) = :
36 5.6985(42)

44 45 46 47 48 49 5 51 52 53
tree-level Symanzik action .
vet oy lattice beta parameter

e For a transition in the continuum QFT, 3. should increase with M.

e This is in contrast with a bulk transition

26



The lattice spacing and T,

1

aT; data —ll—
2-loop universal running

0.1

0.01

38 4 42 44 46 48 5 52 54 56 58
B

aT. = 1/N;, compare with two-loop universal result:

B \h/ 3 1N 3 N2
(R2)(8) = (2Nb0> P (_4Nbo> b=tm 273 (167r2)

In fact Tc/A = 1.26(7)

27



Finite volume scaling

Renormalize the susceptibility

e Continuum extrapolate at fixed volumes

Perform finite volume scaling in the continuum theory

e x ! ~ V7! with a small subleading correction

1.2 T T T T T

1t -
08 | 1
0.6 | 1
04 | 1
02 | 1
0 ‘ . ‘ ) ‘ ) ety

0 0.002 0004 0006 0.008 0.01 0.012 0014 001

Plot from Borsanyi et al, Phys.Rev.D 105 (2022) 7, 074513 8
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Chiral symmetry

massless Dirac operator has chiral symmetry {D+5} =0

SU(N{)L X SU(Nf‘)R X U(].)\/ X U(].)A

Spontaneously broken:
SU(Nf)[_ X SU(Nf)R — SU(Nf)\/

— Goldstone bosons: N? — 1 massless pions

Axial symetries also explicitly broken by quark masses
— pseudo-Goldstone bosons: N,? — 1 light pions

High-temperature: chiral symmetry restoration

U(1)a also broken by the anomaly

30



QCD symmetry breaking pattern

QCD Ising model
N N
spontan.eous Z 0 SU(Nf)L x SU(Nf)r Z 0
breaking — SU(Nr)v
order parameter (P) <1/7¢> (s)
Goldstone ) N2 -1 )
bosons
expll-C|t 1/m m h
breaking
symmetry low T high T high T
restoration

| swept the anomaly under the rug, for now.

31



Lattice fermions on one slide

Z= /DUD,I/)DQ/;e—SYM(U)—LE(D-Fm)w _ /DUdet(D+ m)e_SYM(U)

Nielsen-Ninomiya theorem
Impossible for a massless lattice Dirac operator D to satisfy all of:
1. Correct continuum limit: G™*(p) ~ iv.p, as a — 0
2. Locality: G™!(p) a continuous function of p
3. Continuum chiral symmetry: {Dvs} =0
4

. No doublers: Describes only one flavour in the continuum limit (one pole)

Compomises, compromises, ...
e Wilson fermions: Nf =1, but {D~s} # 0:
Additive mass renormalization (fine tuning), O(a) cut-off effects

e Staggered fermions: {D~s} = 0 but Nf = 4:
Staggered rooting Z = [ DU det M(m, 1, U)"/*e=>vm(V)
e Ginsparg-Wilson/chiral /overlap fermions: Nf = 1:
Ginsparg-Wilson relation: {D~s} = aDvsD, very expensive 32



e In Nf =2+ 1, in the simplest case (say staggered) we have three

bare parameters: [ controls the continuum limit, the quark masses

have to be tuned to their physical values.

e This requires T = 0 simulations. One way to do it:

1.

5.
6.
7.

Fix 8

2. Simulate at some m,, ms
3.
4. Use xPT formulae to guess where you should have simulated to have

Measure m-a, mga, mga

my/mq = 135/1672 and my/mq = 495/1672

If you have not bracketed the physical point yet, GO TO 2)
Once you have bracketed the physical point, interpolate
Measure mq, your lattice spacing is a = (amgq).ar/1672MeV

e Doing this at several value of 3 gives m, (), ms(5) and a(3). Now
you are ready to do the finite temperature simulations.

33



Finite temperature runs

Spatial size L = Nsa(/3)
Temperature T = 1/(N;a(8))
Fixed- approach: change T by changing N;

e Only discrete temperatures are possible X
e Less T = 0 runs needed for tuning v/
e More common with Wilson fermions

Fixed-T approach: chabge T by changing

e Continuous temperatures are possible v/
e More T = 0 runs needed X
e More common with staggered fermions

34



Chiral observables for finite quark mass

Chiral condensate
- T OlogZz
<1/’1/)>q TV om,

Divergence structure:

e multiplicative (quark mass is renormalized multiplicatively)
e additive (~ m/a*> + m*log(a))

The multiplicative renormalization of the quark mass m, = Z,,m drops out

from: m,% = m%. — This combination is UV finite:

Mud

(F0)" == [0y — (50),)

Chiral susceptibility
T &*log 2
Xov =V pmz
2
D bap | My
[ ] e

R
X'pr
35



The chiral crossover for physical quark masses

.20
>
3
E
Py
~ 10

e
ST T T AN A A A B A A A B N B A

0 001 002 0.03 004
1/(TV)

Wuppertal-Budapest: Nature 2006 36



Chiral vs deconfinement

5
local ft Bz s local it Bz
global 1N, fit s 45 % global 1N fit st
HRG —— . global 1N fit
/\\ HRG ——
. ¥ h
A N=8
T MV
140 160 180 200 220 240 260 280 300 120 140 160 180 200 220 240 260 280 300
5 5
s local it (e s local it &z
45 [0 global /N, fit m— 45 70 global 1/N_* fit e
. global N2 fit . global 1N it
HRG —— HRG ——
35
3 N=10 N=12

ii TMev],
120 140 160 180 200 220 240 260 280 300

TMeV],

120 140 160 180 200 220 240 260 280 300

e Inflection point of the Polyakov loop: scheme dependent
e Peak position of the static quark entropy is not Sg = f%
e Matches the T, from chiral observables (Bazavov et al, PRD93, 2016)

37



nsolved questions about the chiral limit (Columbia plot)

® Physical potnt

Crossover

g

® Physical point

A

2y

Zy

Crossover

Ne=1

1] My g 0 My

Plot from Cuteri et al, JHEP11(2021)141

e Perturbative RG (e expansion) (Pisarski & Wilczek, 1984)

e |f anomaly recovered at T.: Nf = 2,3 cannot be 2nd order

e If anomaly is present: Nf = 2 can be second order, Nf = 3 cannot
e |If correct, then left: phase diagram without anomaly, right: with anomaly

e But pert. RG is not always reliable (see e.g. in 2201.07909)
38



Phase transitions and finite-size scaling
Lattice field theory

Deconfinement in pure gauge theory
The QCD crossover transition

The chemical potential

© N o Ok w =

Taylor series in p
Imaginary chemical potential

Reweighting

39



The grand canonical ensemble

Z—="Tr (e*(H*E; MNf)/T)

_1 —(H=%2; niN;)/T
(0) = 7 Tr (Oe )
e H : Hamiltonian

e N; : conserved quantum numbers: [H, N;] =0

E.g. in QCD: N,,Ng4,Ns or equivalently Ng, Ns, Ng:
o211 11
Pu=ZHE+ ZHQ [d = ZlB = 3lQ Hs = ZHB — ZHQ — HS

e T : temperature

e i : chemical potentials

Some quantities follow by differentiation (Nice: no renormalization needed):

L1 1 dlogZ
(ni)

X1= 73 = VT3 O
Gert ) ) =T

V. op;

T2 0% log Z
e =V ((NiNj) = (N () = <7 Opiop; “0




Conjectured phase diagram in the T — ug plane

Eary universe

... Glossover

©
®®®

B

Temperature
T
[\7]
a
=]
3
=)
[}
w

Baryon density / chemical potential / doping
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Chemical potential: Ay = —iu

Non-interacting fermions:

T B
Se( = 0) = /0 [ Pxieu0, +my

Global symmetry: o) — @, 1) — e~ i@
Conserved charge (fermion number)

N = / Pxiryoty

The weights we have to add to the path integral are e ™V, so:

T B
Se(u) = /0 dr / P xB(Dy + o + M)

The chemical potential is like a constant imaginary Abelian gauge
field in the Euclidean time direction Ay = —ipu:

1/T _
SE(M) = /0 / d3xw(71/(al/ + iAI/) + Yo + m)d’

In a U(1) gauge theory (Nf = 1) u can be removed by redefining Ag 42



Chemical potential: 5 hermiticity

Continuum Dirac operator:
M) = (7D + iAL) + yop + m)
At zero chemical potential:
Y5 M(p = 0)y5 = M(p = 0)F
det (15 Mvs) = det M = det(M') = (det M)*

This was continuum, but versions of this also hold for lattice fermions For
non-zero chemical potential:

sM(p)ys = M(—p*)!
—  Complex action problem

e Purely imaginary chemical potential has no complex action problem

e Isospin chemical potential has no complex action problem:
|det M(1)|> = det M(p) det M(—p)

43



Chemical potential: lattice fermions

Naive: ptbyoth — UV divergent

Problem 1: does not couple to the exact conserved charge at a finite a
Problem 2: this is like a photon mass renormalization in QED (zero
momentum) with a gauge symmetry breaking regulator

Hasenfratz, Karsch 1983

U
<

3
»

4
=
I
o

Both problems are solved by introducing the chemical potential as an
imaginary Abelian gauge field in the time direction:

Ug — e“aUX4 Ui4 — €7M3U14

a4



Chemical potential as boundary condition

One way to see it:

e Expand the gluonic effective action Syy — Indet(D + m) in loops

Forward hops in time: weight with e*?; backward: e™#@

For any loop that does not wrap around the time direction: 1

For any loop that wraps around the time direction: e#@NrNuwrap

We might as well put the chemical potential on a timeslice (say the
last) as e*/T and get the same

Another way to see it:
e Use the field redefinition: th, = e #T1). and ¢, = e+

e The 1 dependence then drops for all terms 1, e”1),,4 and
ysae M1y and becomes a boundary condition:

! T ’
Yy, = —e/ Py

45



Phase transitions and finite-size scaling
Lattice field theory

Deconfinement in pure gauge theory
The QCD crossover transition

The chemical potential

Taylor series in 1

© N o Ok w =

Imaginary chemical potential

Reweighting

46



The Taylor method

Z= /DUdet MU(U’ m”’/j'”)det Md(U7 mdn“d) det Ms(Ua maﬂs)e_sc(u)

Now calculate derivatives at =0, e.g.:

1 9%logZ 1
u _ _ Bu A2
=y g, v (Bt A

1 ?log2 1
T = ——(AA
T VT 9uedpg VT (AuAa)

(9 8,wu —1
A, = —IndetM, =T M,
Oty nae ' ( Ofhy )
2 ‘ 2
B, = 75)2 indet M, = Tr (Mo pg; 2 pg, 20 ’\/2’ m Mo
Opis Oftu Opis Oty

Higher derivatives and derivatives of other observables from:

0 0
o 10 = (X ) 4 XA~ (X))

47



Derivatives: an example

u:
1L
0.8 HTLpt ===
HTLpt (N=4) ———-
06 | 1 HRG ------- L
) 4stout (W-B) —e—
04/ e
0.2t
0 ‘ ‘ ‘ T [MeV]
100 200 300 400 500 600

PRD 92 (2015) 11, 114505 ; Bellwied, Borsanyi, Fodor, Katz, Pasztor, Ratti, Szabo

4th order in the continuum: 2015

6th order in the continuum: 2023

e 3th order: only at a finite lattice spacing so far

Higher orders: worse signal-to-noise ratio

i L. 48
e Suppose we can calculate to high orders, what limits the convergence?



Canonical partition functions and Lee-Yang zeros

e For simplicity: only one charge N.
e Since [H, N] = 0 we can simultanously diagonalize
e The partition function:

Z—Tr (e—(H—/LN)/T) Z e/ T Trp(e=/T) ZZ e/ T
n=—kV

e Trp(...) = trace over state |¢p) € H s.t. N|ip) = n||v)
e Zis (up to a non-vanishing factor) a polynomial in e*/T
e Polynomial — has 2kV roots in the complex fugacity plane

— Lee-Yang zeros
o« Zo I (20— e/ ) o< TIy (Wi — 1/ T)
e Z has ;1 — —p symmetry (charge conjugation)
o Z, € R — Lee-Yang zeros come in complex conjugate pairs
e At the LY zeros log Z has a branch point singularity, this gives the

radius of convergence
e Finite volume scaling of LY zeros — order of transition

49
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Roberge-Weiss symmetry

e Put 1 on the last time-slice for all quarks: e/*/T

e Center transformation on final slice zk = "% — e’( #+5)
e The determinant satisfies:

kyp By o 2mik
det M(z"U, 7_)—detM(U, T+ )

e Thus:
By = ~S6(U)
Z(T) /DUdet M(U, 11/ T)e

= /D(ku) det M(ku,u/T)est(ku) =

I3 27rik)
T N

= /DU det M(U, 11/ T + i2rk/N)e56(V) = Z(

It is natural to write the free energy as a Fourier series.
Note: from just Z = Tr(e*(H*“q’Vq)/T) one would naively expect N =3
times the period (Spectrum has baryons, NOT quarks.)
51
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an

T

i
-3y

it

Matsubara frequencies:

(2n+1—-2/3)xT + 1

(2n+1+42/3)7T + 1

T +

)
Magnitude of lowest frequency largest for:

(2n+1+0

—m/3< /T <m/3

T/3< /T <m

/3

/T < —

—7 < [y

¢1=0
(]51:—271'/3

27/3

¢1 =
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Imaginary 1 as an extrapolation tool

Analytical continuation on Ny = 12 raw data

3 & 0.1
I
3
5]
3E] : i 5 i
005 i giay N R T Al s
— (a4 63/ (14 c?) B
[ e e a+ b +csin(ie) /-
-8 -6 -4 -2 0 2 4 6 8
(kn/T)* = —ii?
Two uses:

e Numerical differentiation at u = 0: safe

e Extrapolation: risky 53



The curvature of the crossover line

4
B _ Hp _ Hz —
Te(up) =T.(0) (1 =, (Tc(ﬂg) - (Tc(ﬂﬁ'))

[ [— This work

Bazavov:2018mes, v, X

[E—— Bonati:2018nut, v, ‘::" T?
—e— Bonati:2018nutk, T
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W-B: PRL 125 (2020) 5, 052001; 2002.02821

These are for s tuned such that (S) = 0.

The CEP is not a special point of this curve, but it should lie on it. 54



The curvature of the crossover line - analysis sketch
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chiral condensate:
chiral suscapiibilty
chiral suscapiibilty

01 4812 lattice

o N UBToT BRI N
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TMev] TMev] chiral condensate:

1) Tune ps for each T and pg such that x7 =0

2) 2D scan in T and Im pg — x((Pv))

3) Peak of x(11)) through a low-order polynomial fit for each N and Im g —
(@), (Ne.Im pig) )

4) Interpolate <ww> to convert <1/11/1>C to Tc for each Impug/T

5) Global fit of Tc(Nt,Im ug/T¢) to determine ka and k4 for 1/N? =0
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The width of the crossover at small yg

o [MeV]
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56



Isentropes: critical lensing

T Same Region, N
No Criticali T Crltl.cal
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Sketch from Dore et al, PRD106 (2022)

57



Isentropes from analytic continuation

T [MeV]

300

250 |-

200

150

100

Isentropes (resummation)

ué=ns=0 B

RHIC freeze-out [STAR, PRC96 (2017)
V5 = 19.6GeV < pg ~ 200MeV
Vs =11.5GeV < ug ~ 300MeV

Vs = 7.7GeV & g ~ 400MeV

No sign of critical lensing within errors

Wouppertal-Budapest (preliminary)
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© N o Ok w =

Phase transitions and finite-size scaling
Lattice field theory

Deconfinement in pure gauge theory
The QCD crossover transition

The chemical potential

Taylor series in p

Imaginary chemical potential

Reweighting
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Reweighting

Fields: ¢  Target theory: Z;  Simulated theory: Zg

1443

20(¢) <Wso>s
()
Ws
S
Two problems that are exponentially hard in the volume can arise:
° % € C — the complex action problem became a sign problem

(0), = 1 Do w()06) _ Do welo
" Do wi(9) Do wa(0) 2ele

|

e Tails of p() long — overlap problem
Ws

e Important to choose a “good” ws
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The overlap problem

The expectation value 10% o Ty
: : +

of any observable:

(),

The weights are the

Wy det M (1)
we X derm(oy: 10

calculate anything, we

103

vl e

(0), = 102

10

need to haVe Contr0| 10-1 RN T TR AR R THIT| M STRRTIY MR | 1% 11 |
over this observable 10" 10 10" 102 10® 10 105 10f

Weights

Giordano, Kapas, Katz, Nogradi, Pasztor; PRD 102, 034503 (2020)
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Phase and sign rewe

A simple way to avoid long tails for the distribution of +* is to make sure
that w;/ws take values from a compact space.

Phase reweighting
w, = e~ det M = e~ %¢| det M|e’® We g
ws = e~ ¢ |[det M| phase quenched ensemble ws

Severity of the sign problem: <ei0>PQ = (cosf)pq
Hard to simulate

Sign reweighting
= e %RedetM
e engRe € . = We _ sgncosf = +1
ws = e s [Redet M| sign quenched ensemble Ws

det M — Redet M can be done in Z but not in generic expectation
9"logZ 9"logZ and 9" log Z

2k & ~ can be calculated.
Oup, ' omy, opn

values. E.g. things like

Severity of the sign problem: (&)
de Forcrand et al; NPB Proc. S. 119, 541 (2003) - optimal choice for % = f(0)

BUT: hard to simulate with weights o< |Re det M| 62



The sign problem

. Z 6
e From PQ: Zg = <e >
e Locality — central limit theorem (on the circle, the only stable
distribution is the uniform)

e For fermionic theories, the observables can also be problematic:

logZ > <i log det I\/I>
o

configs with det M ~ 0 — bad signal-to-noise ratio

n

ou"

e Example: the determinant is real for non-zero isospin, but:
e isospin density at non-zero isospin v/
e isospin susceptibility at non-zero isospin X
e Solution: polynomial time algorithm
e Troyer & Weise PRL94 (2005): generic sign problem is NP-hard
e BUT: generic is an important word here:
e Specific sign problems can be solved, and have been solved
e Generic looking ideas might solve it for some cases, but not others
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The phase diagram for non-zero isospin

e SU(2)v broken by the isospin
chemical potential to a U(1):

D+ m+ piyoms

LI B S s e s s B

chiral crossover

e This is then spontaneously broken 160

at a second order transition
140

T (Mev)

SUR)y — U(1)s, — 0

120

e — 1 Goldstone mode
e Add explicit breaking iAvys

e Extrapolate A — 0 (similar to a x o
lim) Brandt, Endrédi, Schmalzbauer;

PRD97, 054514 (2018)
e Sign problem most severe in the 7

condensed phase:
i0 _ Zug _ _—V(fg—f)
(¢ >PQ =z =e P
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Extrapolation vs direct results

16% x 8

T=170 MeV

¢ direct simulation
1 |mmm Taylor NLO
Taylor NNLO
Taylor NNNLO

T= 160 MeV

i
Wouppertal-Budapest: Phys.Rev.D 107 (2023) 9, L091503
Conclusion: in the RHIC BES range (in collider mode)
the QGP EoS is under control
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Summary: pg >0

What is known
e 2nd and 4th derivatives in continuum, 6th and 8th order at finite a
e curvature of the crossover line
e the strength of the crossover &~ const. at small

e EoS in the experimentally accessible range (RHIC BES)

Ongoing research: analytic continuation methods
e Higher order Taylor coefficients at =0
e Higher order Fourier coefficients at imaginary p
e Calculating Lee-Yang zeros and radius of convergence

e Resummations of the series beyond the

Ongoing research: direct methods
e A good discretization for ;o > 07

e Approaches to the sign problem 66



