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Why study T > 0 QFT on the lattice?

Approximately thermal systems

� Cosmological history

� Supernovae, neutron star inspirals

� Heavy ion collision

Non-perturbative phenomena

� Near the QCD transition

� No clear separation of scales T ≈ gT ≈ g 2T ≈ ΛQCD ≈ 1.0/(Rinstanton)

� There are also non-perturbative phenomena even at weak coupling

Interesting

� A number of well defined problems that remain unsolved

� Connections with many fields and methods of physics (stat mech,

condensed matter theory, EFTs, cosmology, heavy ion physics etc.)
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Finite-size scaling - away from transitions

Away from phase transitions
The free energy density fL ≡ FL/L

3 has an infinite volume limit.

With open boundary conditions:

f∞ − fL ∼ −fS
1

L

With periodic boundary conditions:

f∞ − fL ∼ e−ΓL

E.g., in QCD: T ≪ Tc

f∞ − fL ∼ e−mπL

� Asymptotics determined by L = ∞ properties of the theory.

� f (L) ∼ g(L) means limL→∞
log f (L)
log g(L)

= 1
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The phase diagram of the Ising model in d ≥ 2

Z =
∑
{si}

eβ
∑

⟨ij⟩ si sj+h
∑

i si

⟨s⟩ = 1

Ld
⟨M⟩ = 1

Ld

∂ logZ

∂h

χ =
1

Ld
(⟨M2⟩ − ⟨M⟩2) = 1

Ld

∂2 logZ

∂h2

1st order phase transition: non-unique infinite volume limit

� Different boundary conditions → different inf. vol. lim.

� With fixed boundary conditions (say periodic):

lim
N→∞

lim
h→0+

⟨s⟩ = 0 ̸= lim
h→0+

lim
N→∞

⟨s⟩ = MS
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1st order transitions

1st order transition: coexistence
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Finite-size scaling at 1st order transitions

1st order transition: coexistence

Model the probability distribution of the order parameter:

P(s) =

√
Ld

2πχT
×

(
eHMSL

d

eHMSL
d + e−HMSL

d
exp

[
− (s −MS − χTH)2Ld

2χT

]

+
e−HMSL

d

eHMSL
d + e−HMSL

d
exp

[
− (s +MS − χTH)2Ld

2χT

])
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⟨s⟩L = χTH +MS tanh(HMSL
d )

χ =
∂ ⟨s⟩L
∂H

= χT +
M2

SL
d

cosh2(HMSLd )

width ∼ L−d height ∼ Ld
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What happens when we heat water in a closed container?

Charles Cagniard de la Tour, 1822 → discovery of the critical point

At the critical point (2nd order transition): ρliquid = ρvapor
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Charles Cagniard de la Tour, 1822

https://edu.rsc.org/feature/supercritical-processing/2020235.article
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2nd order transitions

2nd order transition: diverging correlation length

HEATING

size of density fluctuations ∼ λlight → critical opalescence
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Finite-size scaling - 2nd order transitions

� Second order transition: diverging correlation length

� Infinite volume:

ξ ∼ |t|−ν χ ∼ |t|−γ t = (T − Tc)/Tc

→ χ ∼ ξγ/ν

� If ξ diverges, it will not fit in the box ξ → L:

χ ∼ Lγ/ν

� 3D Ising: γ ≈ 1.24 ν ≈ 0.63 → γ/ν ≈ 1.96 < d = 3

� Rule of thumb:

⟨O⟩L=∞ (t) ∼ t−ρ → ⟨O⟩T=Tc
(L) ∼ Lρ/ν
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Finally, crossovers

Crossovers

� Close to a critical point, but not quite there (e.g. residual field h0)

� Correlation length ξ large, but finite

� For L ≪ ξ behaves like a critical system

� For L ≫ ξ hehaves like a system away from criticality

Summary
Susceptibility (variance) of the order parameter: χ(L,T = Tc) ∼ Lk

k transition type

0 crossover

γ/ν 2nd order

d 1st order
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Universality classes and non-universal maps

� Types of d.o.f. (scalar, vector, tensor); symmetries; spatial

dimensions; interaction range determine the critical exponents and

the singular part of the free energy near 2nd order transitions

� The mapping of the variables in the different models is not universal

Good textbooks covering finite-size scaling and criticality in more detail:

Goldenfeld; Binder & Heermann; M.N. Barber in Domb, Lebowitz Vol. 8.;

12



1. Phase transitions and finite-size scaling

2. Lattice field theory

3. Deconfinement in pure gauge theory

4. The QCD crossover transition

5. The chemical potential

6. Taylor series in µ

7. Imaginary chemical potential

8. Reweighting

13



The lattice regularization

� Integral over spacetime
∫
d4x(. . . ) → sum over sites a4

∑
x(. . . )

� Derivatives ∂µϕ → finite differences 1
a (ϕ(x + µ̂)− ϕ(x))

� ϕ□ϕ → hopping 1
a2

∑
µ

(
ϕ(x − µ̂)ϕ(x) + ϕ(x + µ̂)ϕ(x)− 2ϕ(x)2

)
� Momenta: |p| ≤ π/a natural cut-off (Brillouin zone)

� Renormalization needed to make certain quantities finite as a → 0

� Cut-off effects: ⟨O⟩lattice = ⟨O⟩continuum + O(aν)

� To get physical results, we need to perform:

� Continuum limit: a → 0

� Infinite volume (thermodynamic) limit: L[fm] → ∞ 14



Gauge symmetry and parallel transport

� Take N-component scalar (Dirac also works): ϕ(x)(□+m2)ϕ(x).

� It has a global symmetry: ϕ(x) → Λ−1ϕ(x) where Λ ∈ SU(3)

� We want to make it local Λ → Λ(x)

� Then ϕ(x) and ϕ(y) transform with a different matrix

� We introduce a parallel transporter U(Cx→y ):

U(Cx→y ) → Λ(y)−1U(Cx→y )Λ(x)

� Now U(Cx→y )ϕ(x) transforms with Λ(y)

� Continuum FT: U(Cx→x+dx) = 1− Aµdx
µ (Lie-algebra valued)

� Lattice FT: we use the parallel transporters (Lie-group valued)

� Exact gauge symmetry at finite lattice spacing (Renormalization!)

� Covariant derivatives: add parallel transporter to hopping terms

� Dynamics for the gauge fields: (traces of) closed loops in the action

� Gauge invariant observables: polynomials of ϕ(x),

ϕ(x)U(Cx→y )ϕ(y), Tr(U(Cclosed loop))
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The plaquette action

� The simplest close loop is a 1X1 square.

� This gives the Wilson (or plaquette) gauge action.

SP =
1

2

∑
x

∑
µν

β

(
1− 1

N
ReTrUx,µν

)
=

−β
4N

∑
x

∑
µν

a4 Tr (FµνFµν)+O(a6)

� The bare gauge coupling: β = 2N/g2

� Also need SU(3) invariant integral measure to define path path

integral (Haar-measure)
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The continuum limit

� Correlation function:
〈
ϕ(⃗0, τ)ϕ(⃗0, 0)

〉
∼ e−(mϕa)(τ/a) = e−(τ/a)/(ξ/a)

� m/MeV = fixed, a → 0 ↔ ξ/a → ∞: 2nd order transition (RG FP)

in the lattice thy

� For non-abelian gauge thy, the FP is Gaussian (asymptotic freedom)

� In many parameter theories: line of constant physics: change bare

parameters such that IR quantities (e.g. mass ratios) are fixed while

a → 0, this def. how one has to approach the FP
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Symanzik improvement

� RG theory tells us that we can add irrelevant operators to the action

without changing the continuum limit.

� But the cut-off effects will be different

� By a clever choice of the irrelevant operators, they can be made

smaller

� Systematic (perturbative) approach: Symanzik

For pure gauge theory, just adding a 2X1 rectangular loop with a well

chosen coefficient improves cut-off effects drastically:
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Finite temperature

� Euclidean time: e iHt = e−Hτ and e iS[ϕ] → e−SE [ϕ]

� Path integral: periodic/antiperiodic BCs for bosons/fermions:

� Bosonic frequencies: ωn = 2nπT (PBC in time)

� Fermionic frequencies: ωn = (2n + 1)πT (APBC in time)

� On the lattice:

T =
1

Nτa

� For fixed T , the continuum limit is taken by taking Nτ → ∞
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Center symmetry and the Polyakov loop

� Multiply links in a time slice with zk = exp
(
2πik
N

)
� Center: commutes with all SU(3) group elements

� Action and integral measure (is invariant, but the Polyakov loop is not:

Px =
1

N
Tr

(
Nτ−1∏
τ=0

U4 (τ, x)

)
→ zkPx

� Order parameter for SSB of center symmetry

� Related to confinement: ⟨P⟩ = e−FQ/T ↔ ⟨P⟩ = 0 ↔ FQ = ∞ 21



Scatter plot of the Polyakov loop near βc

Confined: red; Deconfined real: blue; Deconfined complex: green

A small 1/m: favors the blue sector

Plot from 2112.05454 22



What happens to center symmetry with quarks?

� Fix temporal gauge Ux4 = 1 (Ax4 = 0). You can do this for all, but

the last timeslice, where the (untraced) Polyakov loops remain.

� Further fix the Polyakov gauge, by diagonalizing the Polyakov loops:

P = diag(e iϕ1 , e iϕ2 , e−i(ϕ1+ϕ2))

� In pure gauge theory we had three Polyakov sectors at:

ϕ1 ≈ ϕ2 ≈ 0 ϕ1 ≈ ϕ2 ≈ 2π/3 ϕ1 ≈ ϕ2 = −2π/3

� In a theory with fermions this change in the boundary conditions

shifts the Matsubara frequencies to:

(2n + 1 + 0)πT (2n + 1 + 2/3)πT (2n + 1− 2/3)πT

� The magnitude of the lowest frequency (and so the quark

determinant) is largest for ϕ1 ≈ ϕ2 ≈ 0.
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Symmetry breaking pattern for QCD with heavy quarks

SU(3) gauge theory Ising model

symmetry Z3 Z2

order parameter ⟨P⟩ ⟨s⟩
explicit breaking 1/m h

symmetry restoration low T high T

Ongoing research: locating the heavy critical mass

The critical mass is very large (mπ ∼ O(5GeV ))!

The deconfinement transition in SU(3) gauge theory is a weak first order
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Simulating pure pure SU(3) gauge theory on the lattice

For concreteness, use the tree-level Symanzik improved gauge action

SG =
β

N

∑
x

∑
µ<ν

(
1− ReTr

(
c1Px,µν + c2(R

1
x,µν + R2

x,µν)
))

� The plaquette action has O(a2) error

� By adding 2x1 rectangles, the O(a2) errors can be removed with

c1 = 5/3 and c2 = −1/12 (tree-level/classical improvement)

� In the interacting theory, however, O(g2a2) errors appear

25



βc(Nτ ) for pure glue

� For a transition in the continuum QFT, βc should increase with Nt .

� This is in contrast with a bulk transition
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The lattice spacing and Tc

aTc = 1/Nt , compare with two-loop universal result:

(Λa)(β) =

(
β

2Nb0

)b1/2b
2
0

exp

(
− β

4Nb0

)
b0 =

11N

16π2
b1 =

34

3

(
N

16π2

)2

In fact Tc/Λ = 1.26(7)
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Finite volume scaling

� Renormalize the susceptibility

� Continuum extrapolate at fixed volumes

� Perform finite volume scaling in the continuum theory

� χ−1 ∼ V−1 with a small subleading correction

Plot from Borsányi et al, Phys.Rev.D 105 (2022) 7, 074513
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Chiral symmetry

� massless Dirac operator has chiral symmetry {Dγ5} = 0

SU(Nf )L × SU(Nf )R × U(1)V × U(1)A

� Spontaneously broken:

SU(Nf )L × SU(Nf )R → SU(Nf )V

→ Goldstone bosons: N2
f − 1 massless pions

� Axial symetries also explicitly broken by quark masses

→ pseudo-Goldstone bosons: N2
f − 1 light pions

� High-temperature: chiral symmetry restoration

� U(1)A also broken by the anomaly
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QCD symmetry breaking pattern

QCD Ising model

spontaneous

breaking
Z3 → ∅ SU(Nf )L × SU(Nf )R

→ SU(Nf )V
Z2 → ∅

order parameter ⟨P⟩
〈
ψ̄ψ
〉

⟨s⟩
Goldstone

bosons
- N2

f − 1 -

explicit

breaking
1/m m h

symmetry

restoration
low T high T high T

I swept the anomaly under the rug, for now.
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Lattice fermions on one slide

Z =

∫
DUDψDψ̄e−SYM (U)−ψ̄(D+m)ψ =

∫
DU det(D +m)e−SYM (U)

Nielsen-Ninomiya theorem
Impossible for a massless lattice Dirac operator D to satisfy all of:

1. Correct continuum limit: G−1(p) ∼ iγµpµ as a → 0

2. Locality: G−1(p) a continuous function of p

3. Continuum chiral symmetry: {Dγ5} = 0

4. No doublers: Describes only one flavour in the continuum limit (one pole)

Compomises, compromises, ...

� Wilson fermions: Nf = 1, but {Dγ5} ̸= 0:

Additive mass renormalization (fine tuning), O(a) cut-off effects

� Staggered fermions: {Dγ5} = 0 but Nf = 4:

Staggered rooting Z =
∫
DU detM(m, µ,U)Nf /4e−SYM (U)

� Ginsparg-Wilson/chiral/overlap fermions: Nf = 1:

Ginsparg-Wilson relation: {Dγ5} = aDγ5D, very expensive 32



Tuning

� In Nf = 2 + 1, in the simplest case (say staggered) we have three

bare parameters: β controls the continuum limit, the quark masses

have to be tuned to their physical values.

� This requires T = 0 simulations. One way to do it:

1. Fix β

2. Simulate at some mu,ms

3. Measure mπa,mKa,mΩa

4. Use χPT formulae to guess where you should have simulated to have

mπ/mΩ = 135/1672 and mK/mΩ = 495/1672

5. If you have not bracketed the physical point yet, GO TO 2)

6. Once you have bracketed the physical point, interpolate

7. Measure mΩ, your lattice spacing is a = (amΩ)LAT/1672MeV

� Doing this at several value of β gives mu(β), ms(β) and a(β). Now

you are ready to do the finite temperature simulations.
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Finite temperature runs

� Spatial size L = Nsa(β)

� Temperature T = 1/(Nta(β))

� Fixed-β approach: change T by changing Nt

� Only discrete temperatures are possible ✗

� Less T = 0 runs needed for tuning ✓

� More common with Wilson fermions

� Fixed-T approach: chabge T by changing β

� Continuous temperatures are possible ✓

� More T = 0 runs needed ✗

� More common with staggered fermions

34



Chiral observables for finite quark mass

Chiral condensate 〈
ψ̄ψ
〉
q
=

T

V

∂ logZ
∂mq

Divergence structure:

� multiplicative (quark mass is renormalized multiplicatively)

� additive (∼ m/a2 +m3 log(a))

The multiplicative renormalization of the quark mass mr = Zmm drops out

from: mr
∂
∂mr

= m ∂
∂m

. → This combination is UV finite:〈
ψ̄ψ
〉R

= −
[〈
ψ̄ψ
〉
T
−
〈
ψ̄ψ
〉
0

] mud

f 4π

Chiral susceptibility

χψ̄ψ =
T

V

∂2 logZ
∂m2

q

χR
ψ̄ψ =

[
χψ̄ψT − χψ̄ψ0

] m2
ud

f 4π
35



The chiral crossover for physical quark masses

Wuppertal-Budapest: Nature 2006 36



Chiral vs deconfinement

� Inflection point of the Polyakov loop: scheme dependent

� Peak position of the static quark entropy is not SQ = − dFQ
dT

� Matches the Tc from chiral observables (Bazavov et al, PRD93, 2016)
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Unsolved questions about the chiral limit (Columbia plot)

Plot from Cuteri et al, JHEP11(2021)141

� Perturbative RG (ϵ expansion) (Pisarski & Wilczek, 1984)

� If anomaly recovered at Tc : Nf = 2, 3 cannot be 2nd order

� If anomaly is present: Nf = 2 can be second order, Nf = 3 cannot

� If correct, then left: phase diagram without anomaly, right: with anomaly

� But pert. RG is not always reliable (see e.g. in 2201.07909)
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The grand canonical ensemble

Z = Tr
(
e−(H−

∑
i µiNi)/T

)
⟨O⟩ = 1

Z
Tr
(
Oe−(H−

∑
i µiNi)/T

)
� H : Hamiltonian

� Ni : conserved quantum numbers: [H,Ni ] = 0

E.g. in QCD: Nu,Nd ,Ns or equivalently NB , NS , NQ :

µu =
1

3
µB +

2

3
µQ µd =

1

3
µB − 1

3
µQ µs =

1

3
µB − 1

3
µQ − µS

� T : temperature

� µi : chemical potentials

Some quantities follow by differentiation (Nice: no renormalization needed):

χi
1 =

1

T 3
⟨ni ⟩ =

1

VT 3

∂ logZ
∂µi

χi
2 = T

∂ ⟨ni ⟩
∂µi

=
1

V

(〈
N2

i

〉
− ⟨Ni ⟩2

)
=

T 2

V

∂2 logZ
∂µ2

i

χij
11 = T

∂ ⟨ni ⟩
∂µj

=
1

V
(⟨NiNj⟩ − ⟨Ni ⟩ ⟨Nj⟩) =

T 2

V

∂2 logZ
∂µi∂µj
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Conjectured phase diagram in the T − µB plane
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Chemical potential: A0 = −iµ

Non-interacting fermions:

SE (µ = 0) =

∫ 1/T

0

∫
d3xψ̄(γν∂ν +m)ψ

Global symmetry: ψ → e iαψ, ψ̄ → ψ̄e−iα

Conserved charge (fermion number)

N =

∫
d3xψ̄γ0ψ

The weights we have to add to the path integral are e
µ
T N , so:

SE (µ) =

∫ 1/T

0

dτ

∫
d3xψ̄(γν∂ν + γ0µ+m)ψ

The chemical potential is like a constant imaginary Abelian gauge

field in the Euclidean time direction A0 = −iµ:

SE (µ) =

∫ 1/T

0

∫
d3xψ̄(γν(∂ν + iAν) + γ0µ+m)ψ

In a U(1) gauge theory (Nf = 1) µ can be removed by redefining A0 42



Chemical potential: γ5 hermiticity

Continuum Dirac operator:

M(µ) = (γν(∂ν + iAν) + γ0µ+m)

At zero chemical potential:

γ5M(µ = 0)γ5 = M(µ = 0)†

det (γ5Mγ5) = detM = det(M†) = (detM)∗

This was continuum, but versions of this also hold for lattice fermions For

non-zero chemical potential:

γ5M(µ)γ5 = M(−µ∗)†

→ Complex action problem

� Purely imaginary chemical potential has no complex action problem

� Isospin chemical potential has no complex action problem:

|detM(µ)|2 = detM(µ) detM(−µ)

43



Chemical potential: lattice fermions

Naive: µψ̄γ0ψ → UV divergent

Problem 1: does not couple to the exact conserved charge at a finite a

Problem 2: this is like a photon mass renormalization in QED (zero

momentum) with a gauge symmetry breaking regulator

Hasenfratz, Karsch 1983

Both problems are solved by introducing the chemical potential as an

imaginary Abelian gauge field in the time direction:

Ux4 → eµaUx4 U†
x4 → e−µaU†

x4
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Chemical potential as boundary condition

One way to see it:

� Expand the gluonic effective action SYM − ln det(D +m) in loops

� Forward hops in time: weight with eµa; backward: e−µa

� For any loop that does not wrap around the time direction: 1

� For any loop that wraps around the time direction: eµaNτNwrap

� We might as well put the chemical potential on a timeslice (say the

last) as eµ/T and get the same

Another way to see it:

� Use the field redefinition: ψx = e−µτψ
′

x and ψ̄x = e+µτ ψ̄
′

x

� The µ dependence then drops for all terms ψ̄xe
µψx+4 and

ψ̄x+4e
−µψx and becomes a boundary condition:

ψ
′

Nτ
= −eµ/Tψ

′

0
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The Taylor method

Z =

∫
DU detMu(U,mu, µu) detMd(U,md , µd) detMs(U,ms , µs)e

−SG (U)

Now calculate derivatives at µ = 0, e.g.:

χu
2 =

1

VT 2

∂2 logZ
∂2µu

=
1

VT 2

〈
Bu + A2

u

〉
χud
11 =

1

VT

∂2 logZ
∂µu∂µd

=
1

VT
⟨AuAd⟩

Au =
∂

∂µu
ln detMu = Tr

(
∂Mu

∂µu
M−1

u

)
Bu =

∂2

∂µ2
u
ln detMu = Tr

(
∂Mu

∂µu
M−1

u −M−1
u
∂2Mu

∂µ2
u
M−1

u
∂Mu

∂µu

)
Higher derivatives and derivatives of other observables from:

∂

∂µi
⟨X ⟩ =

〈
∂

∂µi
X

〉
+ ⟨XAi ⟩ − ⟨X ⟩ ⟨Ai ⟩
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Derivatives: an example
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PRD 92 (2015) 11, 114505 ; Bellwied, Borsanyi, Fodor, Katz, Pasztor, Ratti, Szabo

� 4th order in the continuum: 2015

� 6th order in the continuum: 2023

� 8th order: only at a finite lattice spacing so far

� Higher orders: worse signal-to-noise ratio

� Suppose we can calculate to high orders, what limits the convergence?
48



Canonical partition functions and Lee-Yang zeros

� For simplicity: only one charge N.

� Since [H,N] = 0 we can simultanously diagonalize

� The partition function:

Z = Tr
(
e−(H−µN)/T

)
=

+kV∑
n=−kV

enµ/T Trn(e
−H/T ) =

∑
n

Zne
nµ/T

� Trn(. . . ) = trace over state |ψ⟩ ∈ H s.t. N|ψ⟩ = n∥ψ⟩
� Z is (up to a non-vanishing factor) a polynomial in eµ/T

� Polynomial → has 2kV roots in the complex fugacity plane

→ Lee-Yang zeros

� Z ∝
∏2kV

i=1 (zn − eµ/T ) ∝
∏∞

i=1(wi − µ/T )

� Z has µ→ −µ symmetry (charge conjugation)

� Zn ∈ R → Lee-Yang zeros come in complex conjugate pairs

� At the LY zeros logZ has a branch point singularity, this gives the

radius of convergence

� Finite volume scaling of LY zeros → order of transition
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Roberge-Weiss symmetry

� Put µ on the last time-slice for all quarks: e iµI/T

� Center transformation on final slice zk = e
2πik
N → e i(

µI
T + 2πk

M )

� The determinant satisfies:

detM(zkU,
µ

T
) = detM(U,

µ

T
+

2πik

N
)

� Thus:

Z
( µ
T

)
=

∫
DU detM(U, µ/T )e−SG (U)

=

∫
D(zkU) detM(zkU, µ/T )e−SG (z

kU) =

=

∫
DU detM(U, µ/T + i2πk/N)e−SG (U) = Z (

µ

T
+

2πik

N
)

It is natural to write the free energy as a Fourier series.

Note: from just Z = Tr(e−(H−µqNq)/T ) one would naively expect N = 3

times the period (Spectrum has baryons, NOT quarks.)
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Phase diagram at imaginary µB

Matsubara frequencies:

(2n + 1 + 0)πT + µI (2n + 1 + 2/3)πT + µI (2n + 1− 2/3)πT + µI

Magnitude of lowest frequency largest for:

ϕ1 = 0 −π/3 < µI/T < π/3

ϕ1 = −2π/3 π/3 < µI/T < π

ϕ1 = 2π/3 −π < µI/T < −π/3
52



Imaginary µ as an extrapolation tool

Two uses:

� Numerical differentiation at µ = 0: safe

� Extrapolation: risky 53



The curvature of the crossover line

W-B: PRL 125 (2020) 5, 052001; 2002.02821

These are for µs tuned such that ⟨S⟩ = 0.

The CEP is not a special point of this curve, but it should lie on it.
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The curvature of the crossover line - analysis sketch

1) Tune µS for each T and µB such that χS
1 =0

2) 2D scan in T and ImµB → χ(
〈
ψ̄ψ

〉
)

3) Peak of χ(ψ̄ψ) through a low-order polynomial fit for each Nτ and ImµB →〈
ψ̄ψ

〉
c
(Nt , ImµB)

4) Interpolate
〈
ψ̄ψ

〉
to convert

〈
ψ̄ψ

〉
c
to Tc for each ImµB/T

5) Global fit of Tc (Nt, ImµB/Tc ) to determine κ2 and κ4 for 1/N2
t = 0
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The width of the crossover at small µB
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Isentropes: critical lensing

Sketch from Dore et al, PRD106 (2022)
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Isentropes from analytic continuation

Wuppertal-Budapest (preliminary)
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1. Phase transitions and finite-size scaling

2. Lattice field theory

3. Deconfinement in pure gauge theory

4. The QCD crossover transition

5. The chemical potential

6. Taylor series in µ

7. Imaginary chemical potential

8. Reweighting
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Reweighting

Fields: ϕ Target theory: Zt Simulated theory: Zs

Zt =

∫
Dϕ wt(ϕ) wt(ϕ) ∈ C

Zs =

∫
Dϕ ws(ϕ) ws(ϕ) > 0

Zt

Zs
=

〈
wt

ws

〉
s

⟨O⟩t =
∫
Dϕ wt(ϕ)O(ϕ)∫

Dϕ wt(ϕ)
=

∫
Dϕ ws(ϕ)

wt(ϕ)
ws (ϕ)

O(ϕ)∫
Dϕ ws(ϕ)

wt(ϕ)
ws (ϕ)

=

〈
wt

ws
O
〉
s〈

wt

ws

〉
s

Two problems that are exponentially hard in the volume can arise:

�
wt
ws

∈ C → the complex action problem became a sign problem

� Tails of ρ(wt
ws

) long → overlap problem

� Important to choose a “good” ws
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The overlap problem

The expectation value

of any observable:

⟨O⟩t =

〈
wt

ws
O
〉
s〈

wt

ws

〉
s

The weights are the
wt

ws
∝ detM(µ)

detM(0) . To

calculate anything, we

need to have control

over this observable

Giordano, Kapas, Katz, Nogradi, Pasztor; PRD 102, 034503 (2020)
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Phase and sign reweighting

A simple way to avoid long tails for the distribution of wt

ws
is to make sure

that wt/ws take values from a compact space.

Phase reweighting

wt = e−Sg detM = e−Sg | detM|e iθ

ws = e−Sg |detM| phase quenched ensemble
⇒ wt

ws
= e iθ

Severity of the sign problem:
〈
e iθ

〉
PQ

= ⟨cos θ⟩PQ

Hard to simulate

Sign reweighting

wt = e−SgRe detM

ws = e−Sg |Re detM| sign quenched ensemble
⇒ wt

ws
= sgn cos θ = ±1

detM → Re detM can be done in Z but not in generic expectation

values. E.g. things like ∂n log Z
∂µn

ud
, ∂n log Z

∂mn
ud

and ∂n log Z
∂βn can be calculated.

Severity of the sign problem: ⟨±⟩SQ
de Forcrand et al; NPB Proc. S. 119, 541 (2003) - optimal choice for wt

ws
= f (θ)

BUT: hard to simulate with weights ∝ |Re detM| 62



The sign problem

� From PQ: Z
ZPQ

=
〈
e iθ
〉

� Locality → central limit theorem (on the circle, the only stable

distribution is the uniform)

� For fermionic theories, the observables can also be problematic:

∂n

∂µn
logZ ∋

〈
∂

∂µn
log detM

〉
configs with detM ≈ 0 → bad signal-to-noise ratio

� Example: the determinant is real for non-zero isospin, but:

� isospin density at non-zero isospin ✓

� isospin susceptibility at non-zero isospin ✗

� Solution: polynomial time algorithm

� Troyer & Weise PRL94 (2005): generic sign problem is NP-hard

� BUT: generic is an important word here:

� Specific sign problems can be solved, and have been solved

� Generic looking ideas might solve it for some cases, but not others
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The phase diagram for non-zero isospin

� SU(2)V broken by the isospin

chemical potential to a U(1):

D +m + µIγ0τ3

� This is then spontaneously broken

at a second order transition

SU(2)V → U(1)τ3 → ∅

� → 1 Goldstone mode

� Add explicit breaking iλγ5τ2

� Extrapolate λ→ 0 (similar to a χ

lim)

� Sign problem most severe in the π

condensed phase:〈
e iθ
〉
PQ

=
ZµB
ZI

= e−V (fB−fI)

Brandt, Endrődi, Schmalzbauer;

PRD97, 054514 (2018)
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Extrapolation vs direct results

Wuppertal-Budapest: Phys.Rev.D 107 (2023) 9, L091503

Conclusion: in the RHIC BES range (in collider mode)

the QGP EoS is under control
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Summary: µB > 0

What is known

� 2nd and 4th derivatives in continuum, 6th and 8th order at finite a

� curvature of the crossover line

� the strength of the crossover ≈ const. at small µ

� EoS in the experimentally accessible range (RHIC BES)

Ongoing research: analytic continuation methods

� Higher order Taylor coefficients at µ = 0

� Higher order Fourier coefficients at imaginary µ

� Calculating Lee-Yang zeros and radius of convergence

� Resummations of the series beyond the

Ongoing research: direct methods

� A good discretization for µ > 0?

� Approaches to the sign problem
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