

Forward physics at LHC energies

Ferenc Siklér Wigner Research Centre for Physics, Budapest

ELFT Particle Physics Summer School 2024 Mátrafüred May 29, 2024

Forward physics at LHC energies

CMS Collaboration, "In search of the strong interaction: the pomeron" Phys Rev D, in press

• High energy protons

- Elastic scattering (single and multiple exchanges)
- Central exclusive production of hadron pairs (double exchange)
- Mentions: odderon, glueballs

Proton-proton collisions

Diffraction – what is the exchanged particle? Actually, is it a particle?

Theory

• Landscape

- Mandelstam variables (s, t, u)
- "s-channel eikonal" vs "t-channel Regge" approaches
- unitarity of the scattering matrix (conservation of probability)
- crossing symmetry (pp and $\mathrm{p}\overline{\mathrm{p}}$ are related)
- at high \sqrt{s} : many open channels, incoming wave absorbed scattering amplitude is imaginary; "shadow", **diffraction**
- optical theorem

$$\sigma_{\rm tot}(s) = \frac{4\pi}{k} \operatorname{Im} f(0)$$

u-channel

Small angle scattering

U Amaldi, "60 years of CERN experiments . . . "

Collective effect of exchanges of all the particles on a "Regge trajectory" Chew-Frautschi plot – the ρ trajectory – practically linear

Collective effect of exchanges of a trajectory, the "pomeron", with intercept $\alpha_{\rm IP}(0) \approx 1$ No particles (yet) on the trajectory – *t*-slope from forward scattering cross section

Pomeron (\mathbb{P})

• Problems

- the pp and $\overline{p}p$ cross sections are similar, and keep rising
- why do they increase? exchange?
- force carrier must have zero charges

QCD language – exchange of gluon pair(?) \sim gluon ladder

Pomeranchuk

aak

Elastic differential and total

• Cross sections

the elastic amplitude scales as $T_{\rm el}(s,t) \propto (s/s_0)^{\alpha_{\rm I\!P}(t)}$

the elastic differential cross section $\frac{\mathrm{d}\sigma_{\rm el}(t)}{\mathrm{d}t} = \frac{1}{4\pi}|T_{\rm el}(t)|^2$

the total cross section

$$\sigma_{\rm tot} \propto (s/s_0)^{\alpha_{\rm I\!P}(0)-1}$$

the bare pomeron trajectory is $\alpha_{\rm I\!P}(t) = \alpha_0 + \alpha' t$

Can be more complicated

Total cross section

Pomeron- and reggeon-related parameters from the Donnachie-Landshoff fit, and from a refit for $\sqrt{s} > 5 \text{ GeV}$ using latest data. The numbers correspond to the $\pi^+\pi^-$ case, while those in brackets are for $\mathrm{K}^+\mathrm{K}^-$.

Parameter	Original	Refit	Remark	
$C_{\mathbb{I\!P}} \; [mb]$	13.63 (11.82)	$13.25 \pm 0.09 \ (11.60 \pm 0.07)$	pomeron strength	
$lpha_{{ m I\!P}}(0)$	1.0808	1.0845 ± 0.0008	pomeron trajectory intercept	
$lpha'_{ m I\!P}(0) \; [{ m GeV}^{-2}]$		0.25	pomeron trajectory slope	
$C_f \; [mb]$	31.79 (17.255)	$33.75 \pm 0.67 (17.97 \pm 0.45)$	isoscalar strength	
$C_{ ho} [{\sf mb}]$	4.23 (9.105)	$4.12 \pm 0.17 \ (9.10 \pm 0.33)$	isovector strength	
$lpha_{{ m I\!R}}(0)$	0.5475	0.545 ± 0.008	reggeon trajectory intercept	
$\alpha'_{\rm I\!R}(0) \; [{\rm GeV}^{-2}]$	0.93		reggeon trajectory slope	
$B_{ m I\!P} \;[{ m GeV}^{-2}]$	5.5 - 6.0		pomeron slope, $\exp(B_{{ m I\!P}}/2\cdot t)$	
$B_{\rm I\!R} \; [{\rm GeV}^{-2}]$	4.0(?)		reggeon slope, $\exp(B_{ m I\!R}/2\cdot t)$	

Donnachie-Landshoff fit on total cross sections Pomeron and reggeon contributions The differential cross section is related to the scattering amplitude as

$$\frac{\mathrm{d}\sigma_{\mathsf{el}}(t)}{\mathrm{d}t} = \frac{1}{4\pi} |T_{\mathsf{el}}(k_{\mathrm{T}})|^2,$$

where $t \approx -k_{\mathrm{T}}^2 < 0$.

For small |t|, $T_{\rm el}$ is **mostly imaginary**: $\rho(t) \equiv \operatorname{Re} T_{\rm el}(t) / \operatorname{Im} T_{\rm el}(t)$ is small. In impact parameter (b) space, the unitarity equation is

$$2 \operatorname{Im} T_{\mathsf{el}}(b) = |T_{\mathsf{el}}(b)|^2 + G_{\mathsf{in}}(b),$$

The elastic **profile function** $T_{\rm el}(b)$, the overlap $G_{\rm in}(b)$, from the **opacity** $\Omega(b)$.

$$T_{\rm el}(b) = i \left(1 - e^{-\Omega(b)/2} \right),$$
$$G_{\rm in}(b) = 1 - e^{-\Omega(b)}$$

 $d\sigma_{\rm el}/dt \propto \exp(Bt)$ (exponential) $\Leftrightarrow t_{\rm el}(b) \propto \exp[-b^2/(2B)]$ (Gaussian)

The amplitude of the single pomeron exchange is

 $\Omega(k_{\mathrm{T}}) = \eta \sigma_0 F_p^2(t) (s/s_0)^{\alpha_{\mathrm{IP}}(t)-1},$

where $F_p(t)$ is the proton-pomeron form factor, and the (even) signature factor is

$$\eta = i + \tan[\pi/2 \cdot (\alpha_{\mathbf{IP}}(t) - 1)] \qquad [\approx i e^{-i\frac{\pi}{2}(\alpha_{\mathbf{IP}}(t) - 1)}]$$

The **opacity** $\Omega(b)$ is obtained through a Fourier transform

$$\Omega(b) = -i \cdot \frac{1}{2\pi} \int \Omega(k_{\mathrm{T}}) J_0(k_{\mathrm{T}}b) k_{\mathrm{T}} \,\mathrm{d}k_{\mathrm{T}}.$$

Multiple exchanges (eikonalised opacity),

its Fourier transform gives the screening amplitude S, $t_{\rm el}(b) = i\left(1 - e^{-\Omega(b)/2}\right),$ $S(k_{\rm T}) = \frac{i}{2\pi}\int t_{\rm el}(b)J_0(k_{\rm T}b) \, b \, {\rm d}b,$

and the elastic amplitude $T_{\rm el}(k_{\rm T}) = (2\pi)^2 \cdot S(k_{\rm T})$.

Theory -S from empirical parametrisation

Get it from $S(k_{\rm T}) = T_{\rm el}(k_{\rm T})/(2\pi)^2$ where $T_{\rm el}(t) = i \left[G(t)\sqrt{A}e^{Bt/2} + e^{i\phi}\sqrt{C}e^{Dt/2}\right]$

Empirical parametrisation to TOTEM data (Phillips-Barger model)

Theory – *S* from real extended Bialas-Bzdak model

I Szanyi, T Csörgő, Eur Phys J C 81 (2021) 611

Proton as weakly bound state of a constituent quark and a diquark: p = (q, d)Nice description – used also for the odderon study

Theory – *S* from real extended Bialas-Bzdak model

I Szanyi, T Csörgő, Eur Phys J C 81 (2021) 611

Proton as weakly bound state of a constituent quark and a diquark: p = (q, d)On the right: pp (data) vs pp (extrapolated)

$\textbf{Pomeron} \rightarrow \textbf{Odderon}$

D0 and TOTEM Collaborations, Phys Rev Lett 127 (2021) 062003

Discovery – extrapolations and scaling – evidence for odd component

Theory – S from pomeron exchanges – one channel

Theory -S from pomeron exchanges - two channels

Central exclusive production – data

Silicon trackers

Charged particle \rightarrow electron-hole pairs \rightarrow drift and diffusion \rightarrow readout

Scattered protons – roman pots

• Details

- two arms (in sectors 45 and 56)
- near and far stations
 - (at \approx 213 and 220 m)
- top and bottom pots
- within a pot:
 - 5 planes in 'u' and
 - 5 planes in 'v' directions
- each plane has: 4 \times 128 strips

• Two pots per arm

- ightarrow two measurements
- \rightarrow location and momentum at IP

Roman pots – close look at events (not to scale!)

Normal

Normal with secondary (1% within a station)

Roman pots – protons

Track model: $u_i = az_i + b + \delta_i$

Digital hit information (strip number) vs usual normally-distributed uncertainties Expected location on the *i*th plane: measured u_i , slope a, intercept b, shift δ_i

Roman pots – fitting tracklets (5 planes)

Track intercept vs slope (at local z = 0)

Find intersection of bands: polygon

Use that for relative alignment of 'u' and 'v' planes

Roman pots – fitting tracklets (5 planes)

$$y_i^{\mathsf{clus}} - az_i - \delta_i - w < b < y_i^{\mathsf{clus}} - az_i - \delta_i + w,$$

Centroid

Bands

$$C_x = \frac{1}{6A} \sum_{j=0}^{n-1} (x_j + x_{i+j}) (x_j \ y_{j+1} - x_{j+1} \ y_j),$$
$$C_y = \frac{1}{6A} \sum_{j=0}^{n-1} (y_j + y_{i+j}) (x_j \ y_{j+1} - x_{j+1} \ y_j),$$

Area of the polygon is $A = \frac{1}{2} \sum_{j=0}^{n-1} (x_j \ y_{j+1} - x_{j+1} \ y_j)$ Variance through the moment of inertia

$$\sigma_y^2 = \frac{1}{12A} \sum_{j=0}^{N} (x_j y_{j+1} - x_{j+1} y_j) (y_j^2 + y_j y_{j_1}^2 + y_{j+1}^2)$$

Use global χ^2 of all tracklets to optimize relative shifts

Roman pots – relative alignment of planes

Roman pots – strip-level inefficiencies

Roman pots – strip-level efficiencies vs run

Changes wrt run number (here, for a given strip #350)

Roman pots – proton hit locations

The transverse coordinates of a particle (proton) at a path length s

$$x(s) = \sqrt{\beta_x(s)\varepsilon} \cos \left[\phi_0 + \Delta\mu(s)\right] + D_x(s)\Delta p/p,$$

with betatron amplitude β , emittance ε , phase offset ϕ_0 , phase advance $\Delta \mu$, dispersion function D, relative momentum loss $\Delta p/p$.

The dependencies around a given location can be linearised,

$$x_1 = v_{x,1}x^* + L_{x,1}\theta_x^* + D_{x,1}\Delta p/p, \qquad x_2 = v_{x,2}x^* + L_{x,2}\theta_x^* + D_{x,2}\Delta p/p,$$

magnification $v(s) = \sqrt{\beta(s)/\beta^*} \cos \Delta \mu$ and effective length $L(s) = \sqrt{\beta(s)\beta^*} \sin \Delta \mu$. For elastic and central exclusive collisions $|\Delta p/p| \ll 1$, the above equations solved as

$$x^* = (L_{x,2}x_1 - L_{x,1}x_2)/|d|, \qquad \qquad \theta_x^* = (v_{x,1}x_2 - v_{x,2}x_1)/|d|,$$

where $|d| = v_{x,1}L_{x,2} - v_{x,2}L_{x,1}$ is the distance between the near and far pots.

The variance $var(x^*)$ is obtained as

$$\operatorname{var}(x^*) = \frac{\operatorname{var}(x_n)\operatorname{var}(x_f) - \operatorname{cov}(x_n, x_f)^2}{\operatorname{var}(x_f)v_n^2 - 2\operatorname{cov}(x_n, x_f)v_n v_f + \operatorname{var}(x_n)v_f^2}.$$

The ratio of far and near effective lengths is

$$\frac{L_{x,f}}{L_{x,n}} = \sqrt{\frac{\operatorname{var}(x_2) - \operatorname{var}(x^*)v_2^2}{\operatorname{var}(x_1) - \operatorname{var}(x^*)v_1^2}}.$$

The variance of the emission angle is

$$\operatorname{var}(\theta_x^*) = \frac{\operatorname{var}(v_f x_n - v_n x_f)}{d^2},$$

Beam optics studies – near vs far

Left arm vs right arm asymmetry Extract effective lengths L_x from near-far hit covariances

Beam optics studies – effective lengths L_n (near) and L_f (far)

Comparing to nominal numbers, nice match

Scattered protons – absolute alignment per run – x direction

$$A_x = \begin{pmatrix} L_{1f}/d & -L_{1n}/d & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & L_{1f}/d & -L_{1n}/d & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & L_{2f}/d & -L_{2n}/d & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & L_{2f}/d & -L_{2n}/d \\ -pv_{1f}/d & pv_{1n} & 0 & 0 & 0 & 0 & -pv_{2f}/d & pv_{2n}/d \\ 0 & 0 & -pv_{1f}/d & pv_{1n}/d & -pv_{2f}/d & pv_{2n}/d & 0 & 0 \\ -pv_{1f}/d & pv_{1n}/d & 0 & 0 & -pv_{2f}/d & pv_{2n}/d & 0 & 0 \\ 0 & 0 & -pv_{1f}/d & pv_{1n}/d & 0 & 0 & -pv_{2f}/d & pv_{2n}/d \end{pmatrix},$$

and the transformation itself is

$$A_{x}\begin{pmatrix}\delta x_{1nT}\\\delta x_{1fT}\\\delta x_{1nB}\\\delta x_{1nB}\\\delta x_{1nB}\\\delta x_{2nT}\\\delta x_{2nT}\\\delta x_{2fT}\\\delta x_{2nB}\\\delta x_{2fB}\end{pmatrix} = \begin{pmatrix}-\overline{x^{*}}_{1T}\\-\overline{x^{*}}_{2B}\\-\overline{x^{*}}_{2B}\\-\overline{x^{*}}_{2B}\\-\overline{\sum} p_{x}_{TB}\\-\overline{\sum} p_{x}_{BT}\\-\overline{\sum} p_{x}_{BT}\\-\overline{\sum} p_{x}_{BB}\end{pmatrix}$$

•

From measured quantities to alignment

Scattered protons – absolute alignment per run – aligned

Use symmetries for interaction point (x^*, y^*) , momentum sums $(\sum p_x, \sum p_y)$, local hits (x, y)

Scattered protons – deduced displacements vs run

Results – collision vertex

- Reconstructed vertices
 - from using both arms
 - joint distribution of x^* or y^* coordinates of the primary pp interaction
 - beam spot normally distributed with size $\sigma \approx 95 \,\mu{\rm m}$ with precision $6-7 \,\mu{\rm m}$

Roman pots – elastic veto

Roman pots – elastic veto

Calculated suppression efficiency of elastic-like events as functions of p_y in arms 1 and 2 Measured correlation of detected proton momenta $(p_{1,y}, p_{2,y})$ in arm 1 vs 2

Roman pots – proton-pair acceptance and coverage vs ϕ_{pp}

Central hadrons – high-level trigger

At least 5 pixel clusters and at least 3 layers in BPix, or at least one pixel track Inefficiencies, valleys to be corrected

Central tracks – estimate of most probable ε

Through maximum likelihood method, using all pixel and strip hits per track

Central tracks – particle identification through dE/dx

Results – momentum sums

Ellipses with semi-minor axes of 150 MeV (x) and 60 MeV (y) are overlaid

Results – momentum sums – true exclusive vs pile-up

Based on $(\sum_4 p_x \text{ vs } \sum_2 p_x, \sum_4 p_y \text{ vs } \sum_2 p_y)$

Mahalanobis distance χ , based on the value and covariance of momentum sums, defined in the multivariate normal case as

$$\chi(\mathbf{s}) = (\mathbf{s}^T V^{-1} \mathbf{s})^{1/2}$$

where $\mathbf{s} = \sum \mathbf{p}_{T}$, V is the covariance matrix. For 2D vectors $\mathbf{s} = (s_x, s_y)$,

$$\chi(\mathbf{s}) = \left(\frac{V_{yy}s_x^2 - 2V_{xy}s_xs_y + V_{xx}s_y^2}{V_{xx}V_{yy} - V_{xy}^2}\right)^{1/2}$$

The χ_2 values are based on $\sum_2 \mathbf{p}_T$, while χ_4 are computed from $\sum_4 \mathbf{p}_T$.

Event classification – signal and sideband

Theory – **resonances** vs background!

• Nonresonant continuum

The matrix element for the nonresonant continuum process is $\mathcal{M} = M_{13}(t_1, s_{13}) \frac{F_m^2(\hat{t})}{\hat{t} - m^2} M_{24}(t_2, s_{24}) + M_{14}(t_1, s_{14}) \frac{F_m^2(\hat{u})}{\hat{u} - m^2} M_{23}(t_2, s_{23})$ where M_{ik} denotes the "interaction" between a scattered proton and a created hadron, $s_{ik} = (p_i + p_k)^2$, $\hat{t} = (p_3 - q_1)^2 = (p_4 - q_2)^2$ and $\hat{u} = (p_4 - q_1)^2 = (p_3 - q_2)^2$.

The pomeron-meson form factor $F_m(\hat{t})$ and the usual propagator $1/(\hat{t}-m^2)$

Theory – double pomeron exchange

• Nonresonant continuum

At high hadron-proton energies (> 20 GeV) the pomeron exchange dominates $M_{ik}(t_i, s_{ik}) = i s_{ik} C_{\rm IP} \left(\frac{s_{ik}}{s_0}\right)^{\alpha_{\rm IP}(t_i)-1} \exp\left(\frac{B_{\rm IP}}{2}t_i\right)$

Taking into account the reggeon exchange as well

$$\ldots + \left[(a_f + i) s_{ik} C_f \pm (a_\rho - i) s_{ik} C_\rho \right] \cdot \left(\frac{s_{ik}}{s_0} \right)^{\alpha_{\mathrm{I\!R}}(t_i) - 1} \exp\left(\frac{B_{\mathrm{I\!R}}}{2} t_i \right)$$

The weight of an event (or the cross section) is proportional to $|\mathcal{M}|^2/s^2$

Theory – nonresonant continuum – interference!

• Calculate

• Full treatment

- incoming (outgoing) protons may scatter as well, additional complication
- screening effects \boldsymbol{S} ,

related to to "rapidity gap survival"

- several options for ${\boldsymbol{S}}$
 - * from measured $d\sigma_{el}/dt$, through an empirical parametrisation (Fagundes et al)
 - * from a theoretical calculation (Khoze, Martin, Ryskin)

Sum of bare (\mathcal{M}_0) and screened amplitudes at $(\mathbf{p_1}, \mathbf{p_2})$ of the scattered protons $\mathcal{M}(\mathbf{p_1}, \mathbf{p_2}) = \mathcal{M}_0(\mathbf{p_1}, \mathbf{p_2}) + \int d^2 \mathbf{k_T} T_{\mathsf{el}}(k_T) \mathcal{M}_0(\mathbf{p_1} - \mathbf{k_T}, \mathbf{p_2} + \mathbf{k_T})$ Involves a loop integral over the momentum k_T exchanged

Models – DIME, working points

Parameter	DIME-1	DIME-2	DIME-3	DIME-4	Remark	
$\sigma_P \; [mb]$	23	33	60	50	pomeron strength	
$lpha_P$	1.13	1.115	1.093	1.11	pomeron intercept, $=1+\Delta$	
$lpha_P' [{ m GeV}^{-2}]$	0.08	0.11	0.075	0.06	pomeron slope	
γ_i	1 ± 0.55	1 ± 0.4	1 ± 0.42	1 ± 0.47	dimensionless coupling to eigenstate i	
2 $ a_i ^2$	1 ± 0.08	1 ± 0.5	1 ± 0.52	1 ± 0.5	a_i is the amplitude of eigenstate i	
$b_1 \; [GeV^{-2}]$	8.5	8	5.3	7.2		
$b_2 \; [\mathrm{GeV}^{-2}]$	4.5	6	3.8	4.2		
$c_1 \; [\mathrm{GeV}^2]$	0.18	0.18	0.35	0.53	pomeron coupling to eigenstates	
$c_2 \; [\; GeV^2]$	0.58	0.58	0.18	0.24		
d_1	0.45	0.63	0.55	0.6		
d_2	0.45	0.47	0.48	0.48		

- Pomeron-proton(eigenstate) coupling
 - One-channel model: $F_p(t) = \exp(B_{\mathbb{IP}}/2 \cdot t)$
 - Two-channel model: $F_i(t) = \exp\left[-(b_i(c_i - t))^{d_i} + (b_i c_i)^{d_i}\right]$

• Pomeron-meson coupling

$$F_m(\hat{t}) = \begin{cases} \exp(b_{\exp}(\hat{t} - m^2)), \\ \exp(b_{\text{ore}}[a_{\text{ore}} - \sqrt{a_{\text{ore}}^2 - (\hat{t} - m^2)}]), \\ 1/(1 - b_{\text{pow}}(\hat{t} - m^2)) \end{cases}$$

Now using a new generator with proper physics content, from scratch in C++

Measurements – nonresonant $d^3\sigma/dp_{1,T}dp_{2,T}d\phi_{pp}$

As a function of ϕ_{pp} in $(p_{1,T}, p_{2,T})$ bins, in units of $[\mu b/\text{GeV}^2]$, if $0.35 < m_{\pi\pi} < 0.65 \text{ GeV}$

Measurements – nonresonant $d^3\sigma/dp_{1,T}dp_{2,T}d\phi_{pp}$

Curves of a phenomenology-motivated fits with the form $[A(R - \cos \phi)]^2 + c^2$ are plotted

Parameter dependencies

Scaling described by theory-motivated functional forms

Virtual hadron – proof

Propagator of virtual hadron: central hadrons are emitted close to the direction of the incoming pomeron

The squared four-momentum differences between ${\rm I\!P}$ and the hadrons ${\rm h^+}$ and ${\rm h^-}$

Tuning with **PROFESSOR** (version 2.3.3)

• The tool, the tuning

- parametrises the per-bin generator response to variations, numerical optimisation
- reduces the exponentially expensive brute-force tuning to a scaling closer to a power-law
- the parameter space is up to 12 dimensional; the envelopes well cover the data points
- 400 generator runs are performed, each with 500 thousand generated events each

Tuned separately for the parametrisations of the ${\rm I\!P}$ -meson form factor

Model tuning – result

Parameter	Exponential	Orear-type	Power-law		
empirical model					
$a_{\rm ore}[{\rm GeV}]$		0.735 ± 0.015	—		
$b_{\text{exp/ore/pow}}[\text{GeV}^{-2 \text{ or } -1}]$	1.084 ± 0.004	1.782 ± 0.014	1.356 ± 0.001		
$B_{\rm I\!P} \; [{\rm GeV}^{-2}]$	3.757 ± 0.033	3.934 ± 0.027	4.159 ± 0.019		
$\chi^2/{ m dof}$	9470/5796	10059/5795	11409/5796		
one-channel model					
$\sigma_0[mb]$	34.99 ± 0.79	27.98 ± 0.40	26.87 ± 0.30		
$\alpha_P - 1$	0.129 ± 0.002	0.127 ± 0.001	0.134 ± 0.001		
$lpha_P' \; [{ m GeV}^{-2}]$	0.084 ± 0.005	0.034 ± 0.002	0.037 ± 0.002		
$a_{\rm ore}[{\rm GeV}]$		0.578 ± 0.022	—		
$b_{\exp/\operatorname{ore}/\operatorname{pow}}[\operatorname{GeV}^{-2} \circ r^{-1}]$	0.820 ± 0.011	1.385 ± 0.015	1.222 ± 0.004		
$B_{\rm I\!P} \; [{ m GeV}^{-2}]$	2.745 ± 0.046	4.271 ± 0.021	4.072 ± 0.017		
$\chi^2/{ m dof}$	7356/5793	7448/5792	8339/5793		
two-channel model					
$\sigma_0[mb]$	20.97 ± 0.48	22.89 ± 0.17	23.02 ± 0.23		
$\alpha_P - 1$	0.136 ± 0.001	0.129 ± 0.001	0.131 ± 0.001		
$\alpha'_P \; [\mathrm{GeV}^{-2}]$	0.078 ± 0.001	0.075 ± 0.001	0.071 ± 0.001		
$a_{\rm ore}[{\rm GeV}]$		0.718 ± 0.012	—		
$b_{\text{exp/ore/pow}}[\text{GeV}^{-2 \text{ or } -1}]$	0.917 ± 0.007	1.517 ± 0.008	0.931 ± 0.002		
$\Delta a ^2$	0.070 ± 0.026	-0.058 ± 0.009	0.042 ± 0.011		
$\Delta\gamma$	0.052 ± 0.042	0.131 ± 0.018	0.273 ± 0.023		
$b_1 \; [GeV^2]$	8.438 ± 0.108	8.951 ± 0.041	8.877 ± 0.040		
$c_1 \; [\mathrm{GeV}^2]$	0.298 ± 0.012	0.278 ± 0.004	0.266 ± 0.006		
d_1	0.472 ± 0.007	0.465 ± 0.002	0.465 ± 0.003		
$b_2 \; [\mathrm{GeV}^2]$	4.982 ± 0.133	4.222 ± 0.052	4.780 ± 0.060		
$c_2 \; [GeV^2]$	0.542 ± 0.015	0.522 ± 0.006	0.615 ± 0.006		
d_2	0.453 ± 0.009	0.452 ± 0.003	0.431 ± 0.004		
χ^2/dof	5741/5786	6415/5785	7879/5786		

• Models

- empirical

(using measured elastic diff cross section)

- one-channel

(proton in ground state)

– two-channel

(two diffractive eigenstates of the proton)

• Form factors

- meson-pomeron(exponential, Orear-type, power-law)
- proton-pomeron

Model tuning – result

Best fit with two-channel exponential, others are also close

Model tuning – result

Remarkable agreement with DIME KMR m1 ("soft model 1", although with **unexpected** eigenstate weights $(a_1 \approx a_2)$ and eigenstate-pomeron coupling $(\gamma_1 \approx \gamma_2)!$

 $d\sigma/d\phi - \pi^+\pi^-$

Looks good

 $d\sigma/d\phi - \pi^+\pi^-$

Maybe a ground-state proton is enough? But then what about $d\sigma/dt$

 $d\sigma/dm - \pi^+\pi^-$

Looks good

 $\mathrm{d}\sigma/\mathrm{d}\max(\hat{t},\hat{u})-\pi^+\pi^-$

Original DIME tune is quite off

Resonances

Central exclusive production – polar angle

Angular distribution depends on mass – connected to spin! $f_0(980)$ is spin-0 (S-wave), $f_2(1270)$ is spin-2 (D-wave)

Glueballs?

• Details

- enhanced in gluon-rich environment, such as $\mathbb{P}\mathbb{P}$ scattering, also in gluonic jets
- how do you recognise them? difficult, pure gluonic states mix with $q\overline{q}$ states
- no firm mass prediction from lattice calculations

No firm mass prediction from lattice calculations $(1600 - 1700 \text{ MeV}/\text{c}^2)$

Based on $(10087 \pm 44) \times 10^6 J/\psi$ events collected with the BESIII detector, a partial wave analysis of the decay $J/\psi \to \gamma K_S^0 K_S^0 \eta'$ is performed. The mass and width of the X(2370) are measured to be $2395 \pm 11(\text{stat})_{-94}^{+26}(\text{syst}) \text{ MeV}/c^2$ and $188_{-17}^{+18}(\text{stat})_{-33}^{+124}(\text{syst}) \text{ MeV}$, respectively. The corresponding product branching fraction is $\mathcal{B}[J/\psi \to \gamma X(2370)] \times \mathcal{B}[X(2370) \to f_0(980)\eta'] \times \mathcal{B}[f_0(980) \to K_S^0 K_S^0] =$ $(1.31 \pm 0.22(\text{stat})_{-0.84}^{+2.85}(\text{syst})) \times 10^{-5}$. The statistical significance of the X(2370) is greater than 11.7σ and the spin parity is determined to be 0^{-+} for the first time. The measured mass and spin parity of the X(2370)are consistent with the predictions of the lightest pseudoscalar glueball.

Are there $q\overline{q}$ states nearby?

BESII Collaboration, Phys Rev Lett 132 (2024) 181901

Forward physics at LHC energies

CMS Collaboration, "In search of the strong interaction: the pomeron"

Thanks

Optical theorem

Incident plane wave along z axis, the scattering amplitude is

r

$$\phi(\mathbf{r}) \approx e^{ikz} + f(\theta) \frac{e^{ikr}}{r} + \dots$$

For large z and at small angle θ

$$\approx z + \frac{x^2 + y^2}{2z} = z + \frac{\rho^2}{2z}$$

The intensity

$$|\phi|^2 \approx \left| e^{ikz} + \frac{f(\theta)}{z} e^{ikz} e^{ik\rho^2/2z} \right|^2 = 1 + \frac{f(\theta)}{z} e^{ik\rho^2/2z} + \frac{f^*(\theta)}{z} e^{-ik\rho^2/2z} + \frac{|f(\theta)|^2}{z^2}.$$

Dropping $1/z^2$ term, and with $c + c^* = 2 \operatorname{Re} c$,

$$|\phi|^2 \approx 1 + 2 \operatorname{Re}\left[\frac{f(\theta)}{z}e^{ik\rho^2/2z}\right]$$

Optical theorem

Integrate the intensity $|\phi|^2$ on the transverse plane

Sum over many fringes of the diffraction pattern Method of stationary phase: $f(\theta) \rightarrow f(0)$

$$\int_{A} |\phi|^{2} \mathrm{d}A \approx A + 2 \operatorname{Re}\left[\frac{f(0)}{z} \cdot \int_{0}^{2\pi} \mathrm{d}\theta \int_{0}^{\infty} \mathrm{d}\rho \,\rho \,e^{ik\rho^{2}/2z}\right] = A + 2 \operatorname{Re}\left[\frac{f(0)}{z} \frac{2\pi iz}{k}\right] = A - \frac{4\pi}{k} \operatorname{Im} f(0)$$

Therefore the loss, the scattering cross section is

$$\sigma_{\rm tot} = \frac{4\pi}{k} \, {\rm Im} \, f(0)$$

Theory – propagators and virtual particles

• Propagator

- specifies the amplitude for a particle to travel from one place to another in a given time, or with a certain energy and momentum
- for scalars, the propagators are Green's functions for the Klein-Gordon equation

$$\left(\frac{\partial^2}{\partial t^2} - \nabla^2 + m^2\right)G(x, y) = -\delta(x - y)$$

- solution, in momentum space is

$$\tilde{G}_F(p) = \frac{1}{p^2 - m^2}$$

(for resonances, the denom is
$$p^2-m^2+im\Gamma$$
)

• Virtual particle

- transient quantum fluctuation, has some of the characteristics of an ordinary particle
- its existence limited by the uncertainty principle
- t-channel scattering, vacuum polarisation, etc