

Beyond the Standard Model: Cosmology

Károly Seller

ELFT Particle Physics Summer School, 29th of May 2024.

The Standard Models

Particle physics

- Quantum Field Theory (QFT)
- $\mathbf{G}_{\mathbf{SM}} = \mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$
- Particle content:
 - Quarks

EÖTVÖS LORÁND UNIVERSITY

- Charged leptons
- Neutrinos
- Higgs boson
- Gauge bosons

<u>Cosmology</u>

- ΛCDM : FLRW + SM + BSM
- General relativity (background)
- QFT (particle processes)

The Standard Models

Particle physics

- Quantum Field Theory (QFT)
- $\mathbf{G}_{\mathbf{SM}} = \mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$
- Particle content:
 - Quarks

eötvös loránd UNIVERSITY

- Charged leptons
- Neutrinos
- Higgs boson
- Gauge bosons

<u>Cosmology</u>

!!!

- **ACDM**: FLRW + SM + (BSM)
- General relativity (background)
- QFT (particle processes)

The Standard Models

Particle physics

- Quantum Field Theory (QFT)
- $\mathbf{G}_{\mathbf{SM}} = \mathrm{SU}(3)_{\mathrm{c}} \times \mathrm{SU}(2)_{\mathrm{L}} \times \mathrm{U}(1)_{\mathrm{Y}}$
- Particle content:
 - Quarks
 - Charged leptons
 - Neutrinos
 - Higgs boson
 - Gauge bosons

<u>Cosmology</u>

- **ACDM**: FLRW + SM + **BSM**
- General relativity (background)
- QFT (particle processes)
- Energy content of Universe (Ω_i) :
 - Relativistic matter $(\gamma + \nu)$
 - Non-relativistic matter (Baryonic matter + DM)
 - Dark energy (vacuum, ???)

- Framework: fundamental constants (h, c, ...)
 - Fundamental constants = conversion factors between different units
 - Set (almost) all of them to $1 \rightarrow$ natural units

- Framework: fundamental constants (h, c, ...)
 - Fundamental constants = conversion factors between different units
 - Set (almost) all of them to $1 \rightarrow$ natural units
- Model: model parameters $(m_{\nu}, \Omega_{\rm m}, w_{\rm de}, ...)$
 - Only meaningful in the context of the model
 - Possibly non-sense if model is wrong

- Framework: fundamental constants (h, c, ...)
 - Fundamental constants = conversion factors between different units
 - Set (almost) all of them to $1 \rightarrow$ natural units
- Model: model parameters $(m_{\nu}, \Omega_{\rm m}, w_{\rm de}, ...)$
 - Only meaningful in the context of the model
 - Possibly non-sense if model is wrong
- Spot the difference?

Need more planets close to the Sun **to explain** the orbit of Mercury! Need more types of matter to explain the evolution of the Universe!

LFT PARTICLE PHYSICS SUMMER SCHOOL, 29TH OF MAY 2024.

VS

- Framework: fundamental constants (h, c, ...)
 - Fundamental constants = conversion factors between different units
 - Set (almost) all of them to $1 \rightarrow$ natural units
- Model: model parameters $(m_{\nu}, \Omega_{\rm m}, w_{\rm de}, ...)$
 - Only meaningful in the context of the model
 - Possibly non-sense if model is wrong

• Model + Measurement \rightarrow Parameter fit \rightarrow Numbers!

• Model + Measurement \rightarrow Parameter fit \rightarrow Numbers!

- 1. Cosmic Microwave Background [*Planck Collab.* 2021.]
- From era of recombination
- Power spectrum of fluctuations
- 6 parameter fit (flat ΛCDM)
- Many more derived parameters

 $\Lambda, \Omega_{\rm c}, \Omega_{\rm m}, N_{\rm eff}, \Sigma m_{\rm v}, \dots$

• Model + Measurement \rightarrow Parameter fit \rightarrow Numbers!

1. Cosmic Microwave Background [*Planck Collab.* 2021.]

		Planck 2018 6-parameter fit to flat ΛCDM	cosmology	
•	From era of re	baryon density of the Universe cold dark matter density of the Universe	$\Omega_{\rm b} = \rho_{\rm b} / \rho_{\rm crit}$ $\Omega_{\rm c} = \rho_{\rm c} / \rho_{\rm crit}$	$^{\ddagger} 0.02237(15) h^{-2} = ^{\dagger} 0.0493(6)$ $^{\ddagger} 0.1200(12) h^{-2} = ^{\dagger} 0.265(7)$
•	Power spectru	$100 \times \text{approximation to } r_*/D_A$	$100 \times \theta_{\rm MC}$	[‡] 1.04092(31) [‡] 0.054(7)
•	6 parameter fi	ln(power prim. curv. pert.) $(k_0 = 0.05 \mathrm{Mpc}^{-1})$	${}^{ au}_{\mathrm{ln}}(10^{10}\Delta_{\mathcal{R}}^2)$	(1000000000000000000000000000000000000
٠	Many more de	scalar spectral index	$\frac{n_{\rm s}}{\Omega}$	$\frac{1}{0.965(4)}$
		dark energy density parameter	$\Omega_{\rm m} = \Omega_{\rm c} + \Omega_{\rm b}$ Ω_{Λ}	(0.315(7)) (0.685(7)) (10-30) -3
	$\Lambda, \mathfrak{L}_{c}, \mathfrak{L}_{m}, \Lambda$	cosmological constant	$ ho_{\Lambda}$	$^{+}5.83(10) \times 10^{-56} \mathrm{gcm^{-3}}$
		fluctuation amplitude at $8 h^{-1}$ Mpc scale	σ_8	$^{\dagger} 0.811(6)$

• Model + Measurement \rightarrow Parameter fit \rightarrow Numbers!

- 1. Cosmic Microwave Background [*Planck Collab.* 2021.]
- From era of recombination
- Power spectrum of fluctuations
- 6 parameter fit (flat ΛCDM)
- Many more derived parameters

 $\Lambda, \Omega_{\rm c}, \Omega_{\rm m}, N_{\rm eff}, \Sigma m_{\rm v}, \dots$

2. Big Bang Nucleosynthesis [E. Aver *et al.* 2020.]

- Abundances of light elements
- SM + FLRW = SBBN
 - very successful (Lithium?)
 - Experiment + Simulations

 $Y_{\rm p}, \eta, N_{\rm eff} \dots$

Hubble tension

Cosmological measurements (CMB) vs Local Universe Measurements

 $H_0 = 67.66 \pm 0.42 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $H_0 = 73.04 \pm 1.04 \text{ km s}^{-1} \text{ Mpc}^{-1}$

Hubble tension

Non-constant dark energy ($P_{\rm de} = w_{\rm de} \varepsilon_{\rm de}$)

Cosmic Microwave Background vs Dark Energy Spectroscopic Instrument (DESI)

 $w_{de} = -1.028(31)$ $w_{de} = -0.997 \pm 0.025$ $w_{de}(a) = (-0.827 \pm 0.063) - (0.75 \pm 0.29)(1 - a)$

Cosmic Microwave Background vs Dark Energy Spectroscopic Instrument (DESI)

Non-constant dark energy ($P_{de} = w_{de} \varepsilon_{de}$)

Some other experiments to note

- Gravitational waves peeking behind the curtain
 - o LIGO (VIRGO): ground-based, high frequency (1-100 Hz)
 - o LISA: space-based, intermediate frequency $(10^{-5}-1 \text{ Hz})$
 - Phase transition (first order) signatures expected here
 - Topological defects (domain walls, cosmic strings)...
 - PTA: pulsar timing array, low frequency
 - Strong evidence for GW background [NANOGrav, 2023.]

Cosmolog	
бУ	

Some other experiments to note

- Gravitational waves peeking behind the curtain
 - o LIGO (VIRGO): ground-based, high frequency (1-100 Hz)
 - o LISA: space-based, intermediate frequency $(10^{-5}-1 \text{ Hz})$
 - Phase transition (first order) signatures expected here
 - Topological defects (domain walls, cosmic strings)...
 - o PTA: pulsar timing array, low frequency
 - Strong evidence for **GW** background [NANOGrav, 2023.]
- Supernovae (soon? maybe? hopefully...)
 - \circ Formation and cooling mechanism can point to BSM physics + neutrinos

Some other experiments to note

- Gravitational waves peeking behind the curtain
 - $\circ~$ LIGO (VIRGO): ground-based, high frequency (1-100 Hz)
 - o LISA: space-based, intermediate frequency $(10^{-5}-1 \text{ Hz})$
 - Phase transition (first order) signatures expected here
 - Topological defects (domain walls, cosmic strings)...
 - o PTA: pulsar timing array, low frequency
 - Strong evidence for **GW** background [NANOGrav, 2023.]
- Supernovae (soon? maybe? hopefully...)
 - \circ Formation and cooling mechanism can point to BSM physics + neutrinos
- Ultra-high energy cosmic rays Auger Observatory, IceCube, TA...
 - $\circ~$ Open questions: source and composition?

Back to theory...

• Focus on two of the most well-established unexplained observations

Dark matter

- CMB fit: $\Omega_{\rm c} = 0.265(7)$
- Large scale structure
- Gravitational lensing
- Galaxy dynamics (rotation, collisions)

Baryon asymmetry

- BBN fit: $\eta = 6.14(19) \times 10^{-10}$
- Can be inferred from CMB as well
- Lack of anti-matter structures
- AMS-02 experiment

• Focus on two of the most well-established unexplained observations

Dark matter

- CMB fit: $\Omega_{\rm c} = 0.265(7)$
- Large scale structure
- Gravitational lensing
- Galaxy dynamics (rotation, collisions)
- SM has no DM candidate

Baryon asymmetry

- BBN fit: $\eta = 6.14(19) \times 10^{-10}$
- Can be inferred from CMB as well
- Lack of anti-matter structures
- AMS-02 experiment

• SM has no B – L violation

• Extending the SM with a massive and weakly interacting particle

- Extending the SM with a massive and weakly interacting particle
- History Weakly Interacting Massive Particle (WIMP)
 - WIMP "miracle" EW scale mass with EW cross section size
 - \circ Especially favored in SUSY models (neutralino)

- Extending the SM with a massive and weakly interacting particle
- History Weakly Interacting Massive Particle (WIMP)
 - WIMP accident EW scale mass with EW cross section size
 - Especially favored in SUSY models (neutralino)

- Extending the SM with a massive and weakly interacting particle
- History Weakly Interacting Massive Particle (WIMP)
 <u>WIMP "miracle" EW scale mass with EW cross section size</u>

o Especially favored in SUSY models (neutralino)

- Extending the SM with a massive and weakly interacting particle
- History Weakly Interacting Massive Particle (WIMP)

 WIMP "miracle" EW scale mass with EW cross section size
 Especially favored in SUSY models (neutralino)

- Feebly Interacting Particles (FIP) [FIPs 2022]
 - \circ Feeble = (Much) weaker than weak interaction
 - $\circ~$ Opens the flood gates of model crafting!

- Extending the SM with a massive and weakly interacting particle
- History Weakly Interacting Massive Particle (WIMP)

 WIMP "miracle" EW scale mass with EW cross section size
 Especially favored in SUSY models (neutralino)

- Feebly Interacting Particles (FIP) FIPs 2022
 - \circ Feeble = (Much) weaker than weak interaction
 - Opens the floodgates of model crafting!
- Notable examples:
 - Heavy Neutral Leptons (HNL) or right-handed (sterile) neutrinos (RHN)
 - \circ Axions and axion-like particles (ALPs)
 - $\circ~$ Additional scalar fields (e.g. 2HDM) or massive gauge fields (e.g. dark photons)

- Universe is filled with a hot rapidly interacting plasma
 - $\circ~SM~particles~in~equilibrium~($ kinetic + chemical ($\mu\approx0)$)
 - BSM particles produced through **portals**

Dark matter – Setting the scene

- Universe is filled with a hot rapidly interacting plasma
 - $\circ~{\rm SM}~{\rm particles}$ in equilibrium (${\rm kinetic}+{\rm chemical}~(\mu\approx 0)$)
 - BSM particles produced through **portals**

Dark matter – Setting the scene

- Universe is filled with a hot rapidly interacting plasma
 - o SM particles in equilibrium (kinetic + chemical ($\mu \approx 0$))
 - $\circ\,$ BSM particles produced through portals

Dark matter – Thermal interaction rates

- Particle processes: heavy particle decays and scatterings/annihilations
 - \circ Viewed from: cosmic rest frame (GR)
 - Particle energies have thermal distributions: FD or BE

Dark matter – Thermal interaction rates

• Particle processes: heavy particle decays and scatterings/annihilations

• Dark matter: has to decouple from the plasma early in the Universe

• Dark matter: has to decouple from the plasma early in the Universe

Before BBN, roughly at T = 0.1M

Freeze-out scenario

- DM in equilibrium at high T
- Thermal contact due to rapid scatterings
- Scatterings inefficient at T < M

EÖTVÖS LORÁND

• Dark matter: has to decouple from the plasma early in the Universe

• Dark matter: has to decouple from the plasma early in the Universe

Freeze-out scenario

- DM in equilibrium at high T
- Thermal contact due to rapid scatterings
- Scatterings inefficient at T < M

Freeze-in scenario

- DM out of equilibrium at high T
- DM production via heavy particle decays
- Decoupling: all particles decayed

• Dark matter: has to decouple from the plasma early in the Universe

Dark matter – Freeze-out scenario

eötvös loránd UNIVERSITY

Dark matter – Freeze-in scenario

Dark matter example: SWSM + Freeze-out scenario

 $SWSM = G_{SM} \times U(1)_z$ [Z. Trócsányi, 2020.]

- Dark matter candidate: lightest RHN
- Dark matter portal: Z' boson portal
- Model parameters:
 - gauge coupling: g_z
 - Z' mass: $M_{Z'}$
 - RHN mass: M_1

Dark matter example: SWSM + Freeze-out scenario

Supernova constraints (SN1987A)

- Flux measured + simulations for SN
- BSM should not change cooling significantly Big Bang Nucleosynthesis (BBN)
- Pion-enhanced p n conversion
- Changing energetics around $T \approx 0.1$ MeV
- Changing degrees of freedom $(n_{eff} \approx 3)$

Particle physics experiments

- U(1) contribution to g-2
- NA64 experiment (dark photon)
- FASER, BELLE II, LDMX...

• Baryon asymmetry generated and not pre-inflation relic

- Baryon asymmetry generated and not pre-inflation relic
- Sakharov conditions: requirements for successful generation of asymmetry [A.D. Sakharov, 1967]
 - 1. Baryon number violation
 - 2. C and CP violation
 - 3. Deviation from equilibrium

- Baryon asymmetry generated and not pre-inflation relic
- Sakharov conditions: requirements for successful generation of asymmetry [A.D. Sakharov, 1967]
 - 1. Baryon number violation
 - Without it an initially symmetric Universe stays symmetric
 - SM conserves B L but violates B + L through the sphaleron process

- Baryon asymmetry generated and not pre-inflation relic
- Sakharov conditions: requirements for successful generation of asymmetry [A.D. Sakharov, 1967]
 - 1. Baryon number violation \rightarrow sphaleron process

- Baryon asymmetry generated and not pre-inflation relic
- Sakharov conditions: requirements for successful generation of asymmetry [A.D. Sakharov, 1967]
 - 1. Baryon number violation \rightarrow sphaleron process
 - 2. C and CP violation
 - If C or CP were conserved: reaction rates for q and \overline{q} are equal
 - SM has CP violation in the CKM matrix

- Baryon asymmetry generated and not pre-inflation relic
- Sakharov conditions: requirements for successful generation of asymmetry [A.D. Sakharov, 1967]
 - 1. Baryon number violation \rightarrow sphaleron process
 - 2. C and CP violation \rightarrow CP violation in the CKM matrix

- Baryon asymmetry generated and not pre-inflation relic
- Sakharov conditions: requirements for successful generation of asymmetry [A.D. Sakharov, 1967]
 - 1. Baryon number violation \rightarrow sphaleron process
 - 2. C and CP violation \rightarrow CP violation in the CKM matrix
 - 3. Deviation from equilibrium
 - In equilibrium (most symmetric state) asymmetry is washed out
 - Phase transitions can provide deviation (phase separation, bubbles)

- Baryon asymmetry generated and not pre-inflation relic
- Sakharov conditions: requirements for successful generation of asymmetry [A.D. Sakharov, 1967]
 - 1. Baryon number violation \rightarrow sphaleron process
 - 2. C and CP violation \rightarrow CP violation in the CKM matrix
 - 3. Deviation from equilibrium \rightarrow Phase transitions

Electroweak baryogenesis possible?

- Baryon asymmetry generated and not pre-inflation relic
- Sakharov conditions: requirements for successful generation of asymmetry
 - 1. Baryon number violation \rightarrow sphaleron process
 - 2. C and CP violation \rightarrow CP violation in the CKM matrix
 - 3. Deviation from equilibrium -> Phase transitions --

Electroweak baryogenesis possible?

Matter-antimatter asymmetry – Saving baryogenesis

- Fix conditions 2. and 3. \rightarrow EW Baryogenesis still viable
- 2. C and CP violation:
 - Can use C and CP violating effective operators
 - Leads to EDMs \rightarrow experimental constraints
 - Complicated non-equilibrium phenomena [Y. Li *et al.* 2024.]
- 3. Deviation from equilibrium:
 - Phase transition can be made first order with scalar extensions
 - With only one new scalar: already at tree level [J. R. Espinosa *et al.* 2012.]

- Baryon asymmetry generated and not pre-inflation relic
- Sakharov conditions: requirements for successful generation of asymmetry
 - 1. Baryon number violation \rightarrow sphaleron process
 - 2. C and CP violation \rightarrow Effective operators
 - 3. Deviation from equilibrium \rightarrow Extended scalar sector

Electroweak baryogenesis possible?

$$\longrightarrow$$
 Maybe, yes?

Matter-antimatter asymmetry – Leptogenesis

• Idea: Generate ΔL instead of $\Delta B \rightarrow$ Use sphaleron processes to convert

Matter-antimatter asymmetry – Leptogenesis

• Idea: Generate ΔL instead of $\Delta B \rightarrow$ Use sphaleron processes to convert

- Baryon asymmetry via leptogenesis
- Sakharov conditions:
 - 1. Baryon number violation \rightarrow sphaleron process
 - 2. C and CP violation \rightarrow CP violation in HNL decays
 - 3. Deviation from equilibrium \rightarrow HNL production and decay

SM+RHNs leptogenesis

This is OK

This is OK

This is OK

Matter-antimatter asymmetry – Leptogenesis types

- 1. Thermal leptogenesis [M. Fukugita and T. Yanagida, 1986.] [W. Buchmüller et al, 2004.]
 - Standard leptogenesis with very massive HNLs $(M_{\rm HNL} > 10^9 {\rm ~GeV})$
- 2. Flavored leptogenesis [A. Pilaftsis and T.E.J. Underwood, 2005.]
 - Individual lepton number converted to baryon number
 - Necessarily lepton flavor non-universal (constraints)
- 3. Resonant leptogenesis [A. Pilaftsis, 1997.]
 - Self energy diagram in the HNL decay is resonant when $M_1 \approx M_2$
 - CP violation is proportional to imaginary part of decay diagram
 - CP violation can be arbitrarily large with HNL mass fine tuning

Matter-antimatter asymmetry – CP violation

CP violation proportional to the imaginary part of HNL decay diagrams:

Matter-antimatter asymmetry – CP violation

CP violation proportional to the imaginary part of HNL decay diagrams:

Matter-antimatter asymmetry – CP violation

CP violation proportional to the imaginary part of HNL decay diagrams

Matter-antimatter asymmetry – Thermal masses

- Universe filled with hot and rapidly interacting plasma
- Particles traversing the plasma get screened due to interactions
 - Particles gain an effective "thermal mass"
- Thermal mass proportional to coupling and temperature $M_{\rm T} \propto g T$
- Calculated from self energy diagrams in finite T field theory, e.g.:

Matter-antimatter asymmetry – Thermal masses

Thermal mass proportional to coupling and temperature $M_{\rm T} \propto gT$

Matter-antimatter asymmetry – Thermal masses

Thermal mass proportional to coupling and temperature $M_{\rm T} \sim gT$ Mass [GeV] $m_N(T)$ 2000 $m_H(T)$ New feature: $m_L(T)$ Changing mass 1500 $m_H(T) + m_L(T)$ hierarchy $m_L(T) + m_N(T)$ $H \rightarrow N + L$ 1000 $N \rightarrow H + L$ 500 T [GeV] 5001000 1500200025003000 3500 4000

Matter-antimatter asymmetry – Boltzmann equations

Calculate the particle abundance in the expanding Universe in the presence of number changing particle interactions

- 1. HNLs out of equilibrium (Sakharov III.)
- 2. ΔL generated by out of equilibrium decays of HNLs
- 1. ∂_t (HNL abundance) = (HNL producing reactions)
- 2. $\partial_t (\Delta L \text{ abundance}) = \varepsilon (\text{HNL decay rate}) (\Delta L \text{ washout by scatterings})$

Matter-antimatter asymmetry – Boltzmann equations

Calculate the particle abundance in the expanding Universe in the presence of number changing particle interactions

- 1. HNLs out of equilibrium (Sakharov III.)
- 2. ΔL generated by out of equilibrium decays of HNLs

$$sHz \frac{\mathrm{d}\mathcal{Y}_{\Delta \mathrm{L}}}{\mathrm{d}z} \simeq \gamma_{\mathrm{D}} \left[\epsilon \left(\frac{\mathcal{Y}_{N}}{\mathcal{Y}_{N}^{\mathrm{eq}}} - 1 \right) - \frac{\mathcal{Y}_{\Delta \mathrm{L}}}{\mathcal{Y}_{\ell}^{\mathrm{eq}}} \right] - \frac{\mathcal{Y}_{\Delta \mathrm{L}}}{\mathcal{Y}_{\ell}^{\mathrm{eq}}} \left[2\gamma_{N,s}^{\mathrm{sub.}} + 4\gamma_{N,t} + \gamma_{\phi,s} \frac{\mathcal{Y}_{N}}{\mathcal{Y}_{N}^{\mathrm{eq}}} + 2\gamma_{\phi,t} \right]$$
$$sHz \frac{\mathrm{d}\mathcal{Y}_{N}}{\mathrm{d}z} \simeq \left(1 - \frac{\mathcal{Y}_{N}}{\mathcal{Y}_{N}^{\mathrm{eq}}} \right) \left(\gamma_{\chi} + \gamma_{\mathrm{D}} + 2\gamma_{\phi,s} + 4\gamma_{\phi,t} \right) \qquad \text{washout}$$

Summary

- Cosmology necessarily involves BSM physics
- Tensions between astrophysical and cosmological measurements point towards not well-understood underlying theory?
- Particle physics sees nothing while cosmology needs vast quantities of unknown matter/energy
- Advancements in experimental techniques allow us to probe the Universe closer and closer to the very beginning
- Dark matter + Leptogenesis both solvable by particle physics
 - Adding RHNs to SM can basically solve everything
- We know an answer, but did we understand the question?

Thank you for your attention!

References

- [Planck Collab. 2021.] <u>https://inspirehep.net/literature/1682902</u>
- [E. Aver et al. 2020.] <u>https://inspirehep.net/literature/1822144</u>
- [A. G. Riess et al. 2022.] <u>https://inspirehep.net/literature/1986964</u>
- $[DESI\ Collab.\ 2024.] \underline{https://inspirehep.net/literature/2774167}$
- $[NANOGrav, 2023.] \underline{https://inspirehep.net/literature/2672619}$
- [FIPs 2022] <u>https://inspirehep.net/literature/2656339</u>
- [Z. Trócsányi, 2020.] <u>https://inspirehep.net/literature/1711779</u>
- [A.D. Sakharov, 1967] <u>https://inspirehep.net/literature/51345</u>
- [Y. Li et al. 2024.] <u>https://inspirehep.net/literature/2782239</u>
- [J. R. Espinosa et al. 2012.] <u>https://inspirehep.net/literature/920578</u>
- [J.A. Harvey and M.S. Turner, 1990.] <u>https://inspirehep.net/literature/296759</u>
- [M. Fukugita and T. Yanagida, 1986.] <u>https://inspirehep.net/literature/226949</u>
- [W. Buchmüller et al. 2004.] <u>https://inspirehep.net/literature/651434</u>
- [A. Pilaftsis and T.E.J. Underwood, 2005.] <u>https://inspirehep.net/literature/684638</u>
- $[A. Pilaftsis, 1997.] \underline{https://inspirehep.net/literature/440621}$

EÖTVÖS LORÁND

