
Towards exascale computation
via tensor network state algorithms

Simulation of quantum lattice models,
nuclear shell models and

ab initio quantum chemistry hand in hand
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in collaboration with

▶ more than 30 research groups worldwide from condensed matter
physics, quantum chemistry, nuclear physics, quantum information
theory and computer science

▶ High-Performance Computing Center Stuttgart, Germany

▶ Pacific Northwest National Laboratory (PNNL), USA

▶ National Energy Research Scientific Computing Center (NERSC),
USA

▶ NVIDIA, USA

▶ SandboxAQ, USA

Our computer program package is used by more than 30 research group
worldwide for more than two decades.



Strong correlations between electrons → exotic materials

High Tc superconductors Single molecular magnets (SMM)

Nitrogen fixation Battery technology



Experimental realizations: optical lattices

Numerical simulations: model systems

Atoms (represented as blue spheres) pictured
in a 2D-optical lattice potential

Potential depth of the optical lattice can be tuned.

Periodicity of the optical lattice can be tuned.

Hubbard model: lattice model of interacting
electron system

H = t
∑
⟨i,j⟩,σ

c†i,σcj,σ +
U

2

∑
σ ̸=σ′

∑
i

ni,σni,σ′

t hopping amplitude
U on-site Coulomb interaction

σ ∈ ↑, ↓ spin index

Classical or quantum computers?



Tensor product approximation

State vector of a quantum system in the discrete tensor product spaces

|Ψγ⟩ =
n1∑

α1=1

. . .

nd∑
αd=1

U(α1, . . . , αd , γ) |α1⟩ ⊗ · · · ⊗ |αd⟩ ∈
d⊗

i=1

Λi :=
d⊗

i=1

Cni ,

where span{|αi ⟩ : αi = 1 , . . . , ni} = Λi = Cni and γ = 1, . . . ,m.

α1 α2 α3 α4 α5 α6 α7 α8 γ

U

• α is called ’physical’ leg

• In a spin-1/2 model αi ∈ {↓, ↑}.

• In a spin-1/2 fermionic model αi ∈ {0, ↓, ↑, ↑↓}.

dimHd = O(nd) Curse of dimensionality!

→ need efficient data-sparse representation



Tensor product representation
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A general tensor network representation of a tensor of order 5.
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An arbitrary example of a tensor tree (loop free).



Efficient task processig: Maze-Runners Menczer, ÖL (2023)

Nemes, Barcza, Nagy, Ö.L., Szolgay (2014)

▶ In traditional producer-consumer models threads are casted into
disjoint sets labeled as producers and consumers.

▶ Ideally, producer and consumer threads can run in parallel

▶ Instead of implementing high-complexity dynamic scheduling
systems relying on task specific optimizations.

Idle Maze-Runner NO

YES

Maze available?

YES

NO

Task Found? TAKE

Found
Tasks

PUTPut Task into
Database

Solve Task

Search Maze

Life Cycle of a Maze-Runner Thread.

▶ Threads can be fed with
tasks from any level of
recursion.

▶ This ensures a magni-
tude of thread utiliza-
tion not feasable with
classical producer-
consumer based
pipelines.



Memory management: Data Dependency Trees

▶ Naive solution to memory management is to store all required data
in memory at all times

▶ Usually datasets exceed the size of allocatable memory.

▶ Aim: IO to be hideable behind the parallely running computation
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Buffering while Traversing
the Data Dependency Tree.

The numbers represent the
order in which the vertices
are visited.

The arrays show the buffer’s
content for each step.

▶ Gap-free, sequential write and read operations, no allocations and
deallocations are required in the traditional sense.



Strided Batched Matrix Multiplication for Summation

▶ SIMD workloads have a tendency to perform poorly when
bombarded with a high amount of small jobs.

▶ For aggregation of matrix multiplications, both Intel and NVIDIA
has implemented solutions: Batched GEMM.

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4

a1 a2 a3 a4b1 b2 b3 b4c1 c2 c3 c4

Sequential Vector Placement

Interleaved Vector Placement

Vectorized output of a Strided Batched
GEMM operation.

Normally, output vectors
belonging to the same ma-
trix are in a sequential order
(top).

Interleaving the vectors of
different matrices (bottom)
is possible by altering the
leading dimensions and
stride values of the output
matrices.

▶ We can perform batched type chained matrix multiplications without
sum reduction at the end.



CPU only limit (for CAS(113,76) dimH = 2.88× 1036)
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(113,76), Maze-R + MKL seq.

(54,54), Maze-R + MKL seq.

(18,18), Maze-Runner + MKL seq.

(18,18), OpenMP + MKL seq.

(18,18), MKL Threaded

Performance measured in TFLOPS for the F2 and FeMoco chemical
systems for CAS(18,18) and CAS(54,54) orbitals spaces, respectively, as
a function of the DMRG bond dimension on a dual Intel(R) Xeon(R)
Gold 5318Y CPU system with 2× 24 physical cores running at 2.10 Ghz.



Boosting the effective performance via non-Abelian symmetries
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A. Menczer, Ö.L (2023), FeMoco(113,76)

• New mathematical model for parallelization → felxibe scaling

• DSU(2) = 24576 → FCI solution

• We reached 110 TFLOPS > 76 TFLOPS of the FP64 limit of NVIDIA
→ utilization of highly specialized tensor core units (TCU)



Boosting the effective performance via non-Abelian symmetries
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• New model to utilize NVIDIA D2D links. A. Menczer ÖL (unpublished 2023)

• NVIDIA DGX H100 and Grace Hopper GH200:
Testing performance up to ∼ 240 TFLOPS in collab with NVIDIA and
SandboxAQ M. van Damme, A. Menczer, M. Ganahl, J. Hammond, Ö.L

• Combination of our MPI and GPU kernels:
multiNode-multiGPU → petascale computing. A. Menczer ÖL (unpublished

2023)





Conclusion

▶ Underlying tensor and matrix algebra can be organized into several
million of independent operations (tasks)

▶ Tensor networks methods are ideal for parallelization → felxible
scaling

▶ Application of two-qbit gates and general network structure →
simulation of quantum computing

▶ AI and deep learning can be formulated via tensor network methods

▶ Capturing strong correltaions → a universal simulator for material
properties, chemical reactions, quantum information theory etc

▶ multiNode-multiGPU → exascale computation

▶ Would be open for and be happy about collaborations
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