Time evolution simulation of the quantum mechanical wave function in 3D space

Zoltán Simon

Supervised by:

Dr. Balázs Csébfalvi, Dr. Péter Vancsó, Dr. Géza István Márk

Budapest University of Technology and Economics

Centre for Energy Research

Institute of Technical Physics and Materials Science - Department of Nanostructures

- Structure and composition of carbon nanostructures
- Tunneling through carbon nanostructures
- Etc.

Outline

- 1. Introduction to wave packet dynamics
- 2. Simulation method
- 3. Visualization method
- 4. Presentation of results

Wave packet dynamics

Canvas

Wave packet scattering in defected graphene

Time development of a Bloch function wave packet on pristine graphene surface www.nanotechnology.hu

Motivation

Possible simulation methods

$$i\hbar \frac{d}{dt} \psi(\vec{r}, t) = \left[-\frac{\hbar^2}{2m} \Delta + V(\vec{r}) \right] \psi(\vec{r}, t)$$
$$\psi(\vec{t} \cdot \vec{r}, t) = e^{-\frac{i}{\hbar} \hat{H}(\delta t) t} \psi(\vec{t} \cdot \vec{t}, t_{01})$$

How to calculate numerically?

- Split-operator Fourier method
- Finite Difference Time Domain

Fourier transform of the derivative

Operator separation

$$\begin{split} \psi(\vec{r},t_n) &= e^{-\frac{i}{\hbar}\widehat{H}\delta t}\psi(\vec{r},t_{n-1}) \\ e^{-\frac{i}{\hbar}\widehat{H}\delta t} &= e^{-\frac{i}{\hbar}(\widehat{K}+\widehat{V})\delta t} \\ e^{-\frac{i}{\hbar}(\widehat{K}+\widehat{V})\delta t} &\approx e^{-\frac{i}{\hbar}\widehat{K}\delta t/2}e^{-\frac{i}{\hbar}\widehat{V}\delta t}e^{-\frac{i}{\hbar}\widehat{K}\delta t/2} \end{split}$$

Error of the approximation is $\mathcal{O}(\delta t^3)$.

Split-operator Fourier method $\psi(\vec{r},t_n) \approx e^{-\frac{i}{\hbar}\hat{K}\delta t/2}e^{-\frac{i}{\hbar}\hat{V}\delta t}e^{-\frac{i}{\hbar}\hat{K}\delta t/2}\psi(\vec{r},t_{n-1})$ $\frac{ik^2\hbar\delta t}{4m}$ $\times e^{-\frac{\iota}{\hbar}V(\vec{r})\delta t}$ ik²ħδt X e____

FDTD method: power series expansion

$$\psi(\vec{r},t_{n+1}) = e^{-\frac{i}{\hbar}\hat{H}\delta t}\psi(\vec{r},t_n) = \sum_{k=0}^{\infty} S_k(\vec{r},t_n)$$

$$S_k(\vec{r}, t_n) = \frac{-\frac{i}{\hbar}\widehat{H}\delta t}{k} S_{k-1}(\vec{r}, t_n) = \frac{i\delta t}{k} \left[\frac{\hbar}{2m}\Delta S_{k-1}(\vec{r}, t_n) - \frac{V(\vec{r})}{\hbar} S_{k-1}(\vec{r}, t_n)\right]$$

$$k = 1, 2, 3, \dots$$

$$S_0(\vec{r}, t_n) = \Psi(\vec{r}, t_n)$$

Ray marching To visualize: $\rho(\vec{r}, t) = |\psi(\vec{r}, t)|^2$ probability density

Advanced visualization techniques

My implementation

- A program written in Python
- The 3D FFT calculation and the large complex valued tensor multiplications are carried out on the GPU using **CUDA**.
- Mathematics: Numpy, Cupy
- Visualization: Vispy
- <u>Custom CUDA kernels</u> for some calculations
- Custom GLSL shader for ray marching

github.com/ TheFlyingPiano99/ WaveFunctionSimPython

Achieved speed-up

- $\bullet \times 50$ speed-up compared to the previous implementation
- $512 \times 512 \times 512$ voxels simulated with the speed of ~0.5 iteration / second.

Input size	CPU-only Avg.	GPU accelerated	Avg.
	[iter/s]	Avg. [iter/s]	speed up
$128 \times 128 \times 128$	1.1	11.5	$\times 10.45$
$256\times256\times256$	0.09	6.5	$\times 72.22$
$512 \times 512 \times 512$	0.01	0.5	$\times 50.00$

Achieved speed-up

Double-slit simulation

Elapsed time = 0.00 ħ/Hartree = 0.00 fs

WP pushed by a moving potential wall

Elapsed time = 0.00 ħ/Hartree = 0.00 fs

WP pushed by a moving potential wall

Summary

Elapsed time = 12.90 ħ/Hartree = 0.31 fs

Further development

- Experimenting with other simulation methods
- Simulation of multiple 3D particles

Elapsed time = 12.90 ħ/Hartree = 0.31 fs

Thank you for your attention!

Extra slides

Schrödinger equation

$$i\hbar \frac{d}{dt} \psi(\vec{r}, t) = \hat{H} \psi(\vec{r}, t)$$

$$\int_{\hat{H}} \frac{\hbar^2}{2m} \Delta + V(\vec{r})$$

Hamiltonian Kinetic Potential

Erwin Schrödinger 1926

 $\rho(\vec{r},t) = |\psi(\vec{r},t)|^2$... probability density of measurement

 $\hbar \doteq 1.05 \times 10^{-34} Js...$ reduced Planck's constant

Double-slit experiment

Wave packet scattering in defected graphene

Time development of a Bloch function wave packet on pristine graphene surface www.nanotechnology.hu

Mark, G.I.; Vancso, P. Ab-initio wave packet dynamical simulation of defects in 2D materials

This Certificate is awarded to

Geza I. Mark Peter Vancso

for the paper judged as making the most significant contribution to the conference

18/12/2020

Prof. Dr. Takayoshi Kobayashi SIGNATURE

1st International Electronic Conference on Applied Sciences

Memory requirement

 $512 \times 512 \times 512$ voxel

8 byte / voxel (4 byte real and 4 byte imaginary part)

Simulation time

- FFT algorithm $\epsilon O(n\sqrt{n})$
- $\leq 512^3$ voxels are doable
- 1024³ voxels are already 8 GB

Input size	CPU-only A [*] [iter/s]	vg. GPU accelerated Avg. [iter/s]	d Avg. speed up
$128 \times 128 \times 128$	1.1	11.5	×10.45
$256 \times 256 \times 256$	0.09	6.5	×72.22
$512 \times 512 \times 512$	0.01	0.5	$\times 50.00$

Scattering in diffraction grating (verification)

Elapsed time = $16.50 \hbar/hartree = 0.40 fs$

Scattering in diffraction grating (verification)

Double-slit experiment Mérőeszköz e Rések Ernyő

Newton vs Schrödinger

Hartree atomic units

- Reduced Planck constant ... $\hbar=1$
- Elementary charge ... e = 1
- Electron rest mass ... $m_e = 1$
- Bohr radius ... $a_0 = 1$