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Motivation

• NISQ: Noisy Intermediate-Scale Quantum Devices
• Today already 50-100 noisy qubits (NISQ)
• Early versions of error correction
• Approaching regime of potential practical quantum advantage
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• Approaching regime of potential practical quantum advantage

• Quantum computational supremacy demonstrated on:
• Superconducting device by Google 

(2019) https://www.nature.com/articles/s41586-019-1666-5

• Photonic 
• Xanadu, 2022: https://www.nature.com/articles/s41586-022-04725-x
• Jiuzhang 3.0, 2023: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150601

https://www.nature.com/articles/s41586-019-1666-5
https://www.nature.com/articles/s41586-022-04725-x
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150601


Motivation

• NISQ-era candidates for practical quantum advantage:

§ Simulation of quantum chemistry and many-body systems

§ Variational quantum optimization methods like QAOA

§ Quantum Machine Learning (Includes Quantum Reinforcement Learning)

§ Hybrid Quantum-Classical methods enabled by classical HPC



Motivation

• QRL is limited by the available QPU sizes

§ Many RL environments have high dimensional state spaces (e.g. visual data)

§ We would need large scale QPUs to encode raw features into quantum states

§ Solution: use latent features extracted by classical algorithms



Reinforcement Learning
• Reinforcement Learning (RL) is a 

method designed to optimally solve 
a control problem in a simulated or 
real-world environment.

• In RL, an Agent is observing the 
state of  the environment and choses 
actions accordingly.

• After the agent performs the action, 
the environment returns a reward and 
the next state.



Reinforcement Learning
• The goal is to train an agent 

which maximizes the discounted 
cumulative reward,

• Such Agents are usually 
implemented as NNs.



Reinforcement Learning
Model-based: have access to a 
model of the environmentModel-free: do not access the 

model of the environment

Source: https://spinningup.openai.com/
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We will use Proximal 
Policy Optimization



Proximal Policy Optimization (PPO)

• PPO is a model-free method 
using two function 
approximators: 
an Actor and a Critic.

• The Actor choses an action 
according to a policy π.

• The Critic calculates the 
estimated value of the 
state.



Proximal Policy Optimization (PPO)

• The Critic receives the 
reward and calculates 
the temporal difference 
error, which is used to 
update both Actor and 
Critic networks.



Proximal Policy Optimization (PPO)

is the value function used by the Critic.

is the policy, where theta are the tunable parameters.

is the ratio of the new and old policies.

is the estimated advantage with

are the state, action & reward at timestep t., ,

The advantage function estimates the extra reward that could be obtained by the agent by taking that 
particular action.



Proximal Policy Optimization (PPO)

Critic Loss:

Clipped Surrogate Objective:

PPO Objective:



Quantum Reinforcement Learning with PPO
• Substitute the classical 

policy with a QNN

• Encode states into q-states, 
compute actions from 
measurements

• The rest of the system is 
classical

• Optimize the QNN policy 
parameters via gradient 
descent



Latent-space QRL

• As mentioned: environments 
often have high dimensional 
observables

• We can not encode the full 
observable into the initial 
state of a QNN

• We use a classical AE for 
feature extraction, and 
encode latent features

• The classical AE is trained 
together with the quantum 
agent 



Latent-space QRL

• We optimize the hybrid 
system via a combined loss 
function:

• Optionally, the AE can be pre-
trained 



Numerical experiments

• We tested this approach with various configurations:

• Three environments: Cartpole-v1, Acrobot-v1 and Maze-v0

• Various AE sizes, and various number of QNN layers

• Both qubit-based and photonic QNNs

• “Cold started” AEs versus pre-trained Aes

• Compared with fully classical baselines



Numerical experiments

• Maze-v0 environment

• 48x48 grayscale image

• 4 possible actions: up, down, 
left, right

• The agent starts at a random 
cell



Numerical experiments



Numerical experiments

Qubit-based results simulated with Pennylane. Left: Comparing different AE sizes with 1-layer QNN; 
Right: Comparing different QNN layer count with the smallest AE.

Each curve is a smoothed average over five agents run in parallel



Numerical experiments

Photonic results simulated with Piquasso. Left: Comparing different AE sizes with 1-layer QNN; 
Right: Comparing different QNN layer count with the smallest AE.

Each curve is a smoothed average over five agents run in parallel



Conclusions

• We demonstrated that the AE+QNN method enables the application of QRL 
for high dimensional environments.

• We showed that the joint training of a classical AE and a QRL agent is 
necessary for convergence.

• We see a tradeoff between AE size and QNN layer count

• We conclude that in some cases, the AE + QNN method can outperform the 
fully classical approach in terms of parameter count, however this needs 
further research



Outlook

• A manuscript is in progress with more details.
• Further tasks:
• Introduce a quantum critic alongside the quantum policy
• Try to find the best value for the c_ae coefficient
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