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Motivation

* NISQ: Noisy Intermediate-Scale Quantum Devices
* Today already 50-100 noisy qubits (NISQ)
* Early versions of error correction
* Approaching regime of potential practical quantum advantage
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* Early versions of error correction
* Approaching regime of potential practical quantum advantage

* Quantum computational supremacy demonstrated on:

* Superconducting device by Google
(2019) https://www.nature.com/articles/s41586-019-1666-5

e Photonic

* Xanadu, 2022: https://www.nature.com/articles/s41586-022-04725-x
 Jiuzhang 3.0, 2023: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150601
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Motivation

* NISQ-era candidates for practical quantum advantage:
= Simulation of quantum chemistry and many-body systems
= Variational quantum optimization methods like QAOA

= Quantum Machine Learning (Includes Quantum Reinforcement Learning)

= Hybrid Quantum-Classical methods enabled by classical HPC



Motivation

* QRL s limited by the available QPU sizes
= Many RL environments have high dimensional state spaces (e.g. visual data)

= We would need large scale QPUs to encode raw features into quantum states

= Solution: use latent features extracted by classical algorithms




Reinforcement Learning

* Reinforcement Learning (RL) is a
) method designed to optimally solve
7 Agent — a control problem in a simulated or

real-world environment.
St Tt
at+1 : :
--------- Ny’ Wl i * In RL, an Agent is observing the
St+1 | state of the environment and choses
actions accordingly.

Environment <€<———

* After the agent performs the action,
the environment returns a reward and
the next state.



Reinforcement Learning

* The goal is to train an agent

| ) which maximizes the discounted
:{ Agent ) cumulative reward,
St | |t | ,
""""" AN (Lt+l R — ny Tt
St+1 | |Tt+1 t
| Environment <—I * Such Agents are usually

implemented as NNs.



Reinforcement Learning

RL Algorithms Model-based: have access to a
Model-free: do not access the :
. | model of the environment
model of the environment \ s 1 /
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Reinforcement Learning

RL Algorithms Model-based: have access to a
Model-free: do not access the :
. | model of the environment
model of the environment \ s Y /
Model-Free RL Model-Based RL
We will use Proximal ¢ 3 { 3
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Proximal Policy Optimization (PPO)
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* PPOis a model-free method
using two function
approximators:
an Actor and a Critic.

e The Actor choses an action
according to a policy m.

e The Critic calculates the
estimated value of the
state.



Proximal Policy Optimization (PPO)
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* The Critic receives the
reward and calculates
the temporal difference
error, which is used to

update both Actor and
Critic networks.



Proximal Policy Optimization (PPO)

St , a/t ) Tt are the state, action & reward at timestep t.

7Tg ( . ‘ S) is the policy, where theta are the tunable parameters.

Tt (9) — 7T9/’/T¢901d is the ratio of the new and old policies.

Vﬂ (S) is the value function used by the Critic.
PP
Ay = Z (YA)'8:41 is the estimated advantage with  6; = 7¢ + YV (5¢41) — V7 (s¢)
1=0

The advantage function estimates the extra reward that could be obtained by the agent by taking that
particular action.



Proximal Policy Optimization (PPO)

Critic Loss:

LYF =B [(V(s0) — Vitg(s0))”)

t

Clipped Surrogate Objective:
LE(6) = K [min ("“t(g)/iu clip (r+(6), €) At)]

PPO Objective:

LPPO = £CUP(9) 4 ¢,8 [mg] + caReg()
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Quantum Reinforcement Learning with PPO

Hybrid Agent Training
Quantum Actor
PPO Optlmlzer P o <B>
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reward

Environment

Substitute the classical
policy with a QNN

Encode states into g-states,
compute actions from
measurements

The rest of the system is
classical

Optimize the QNN policy
parameters via gradient
descent



Latent-space QRL

As mentioned: environments
often have high dimensional
observables

We can not encode the full
observable into the initial
state of a QNN

We use a classical AE for
feature extraction, and
encode latent features

The classical AE is trained
together with the quantum
agent
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Latent-space QRL

* We optimize the hybrid
system via a combined loss
function:

E(PPO+AE) _ L(PPO) + caeL(AE)

* Optionally, the AE can be pre-
trained
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Numerical experiments

 We tested this approach with various configurations:
 Three environments: Cartpole-vl, Acrobot-vl and Maze-v0
* Various AE sizes, and various number of QNN layers
* Both qubit-based and photonic QNNs
* “Cold started” AEs versus pre-trained Aes

 Compared with fully classical baselines



Numerical experiments

Maze-v0 environment
48x48 grayscale image

4 possible actions: up, down,
left, right

The agent starts at a random
cell



Numerical experiments
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Numerical experiments

O_
) (AN XL
Wi iy A A
_2 -
_4—
A
_6-
[
_8- lt |
b —— CAE, QNN-L1
10 1 1 CAE-v2, QNN-L1
—— CAE-v3, QNN-L1
—— CNN
_12 ] T T T T T T
0 1000 2000 3000 4000 5000 6000
Episodes

Reward

—— CAE-v3, QNN-L1

CAE-v3, QNN-L3
—— CAE-v3, QNN-L5
—— CNN

4000 6000 8000 10000

Episodes

2000

Qubit-based results simulated with Pennylane. Left: Comparing different AE sizes with 1-layer QNN;
Right: Comparing different QNN layer count with the smallest AE.

Each curve is a smoothed average over five agents run in parallel



Numerical experiments
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Photonic results simulated with Piquasso. Left: Comparing different AE sizes with 1-layer QNN;
Right: Comparing different QNN layer count with the smallest AE.

Each curve is a smoothed average over five agents run in parallel



Conclusions

* We demonstrated that the AE+QNN method enables the application of QRL
for high dimensional environments.

* We showed that the joint training of a classical AE and a QRL agent is
necessary for convergence.

* We see a tradeoff between AE size and QNN layer count

* We conclude that in some cases, the AE + QNN method can outperform the
fully classical approach in terms of parameter count, however this needs
further research



Outlook

* A manuscript is in progress with more details.

* Further tasks:
* Introduce a quantum critic alongside the quantum policy
* Try to find the best value for the c_ae coefficient
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Suppplimentary information

Environment | Name Hidden | Encoder | Decoder
Sizes Params | Params
CartPole-vl | AE-h0 : 10 12
CartPole-vl | AE-h4 4 30 32
Acrobot-v1 AE-h0 - 21 24
Acrobot-v1 AE-h4 4 43 46
Name | Platform Filter Pooling | Encoder | Decoder
Sizes size Params | Params
CAE qumode | 2,2, 4,4 2 504 679
CAE-v2 | qumode | 2,4,8,8 2 1414 2057
CAE-v3 | qumode 2, 2 4 172 221
CAE qubit 2,2,4, 4 2 o978 751
CAE-v2| qubit |2,4,88| 2 1560 2075
CAE-v3 | qubit 2,2 4 210 257

Environment | Name | platform QNN
params
CartPole-vl | QNN-11 qubit 6
CartPole-vl | QNN-I3 qubit 18
CartPole-vl | QNN-16 qubit 32
CartPole-vl | QNN-I1 | qumode 14
CartPole-vl | QNN-13 | qumode 42
CartPole-vl | QNN-16 | qumode 84
CartPole-v1 MPL classic 114
Acrobot-v1 QNN-I1 qubit 9
Acrobot-v1 QNN-I13 qubit 27
Acrobot-v1 QNN-16 qubit 54
Acrobot-v1 QNN-11 | qumode 28
Acrobot-v1 QNN-13 | qumode 84
Acrobot-v1 QNN-16 | qumode 168
Acrobot-v1 MPL classic 163
Maze-v0 QNN-11 qubit 24
Maze-v0 QNN-13 qubit 72
Maze-v0 QNN-15 qubit 120
Maze-v0 QNN-11 | qumode 9
Maze-v0 QNN-13 | qumode 282
Maze-v0 QNN-16 | qumode 564
Maze-v0 CNN classic 81140




