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Machine learning and GPU computing

In early 2010 inference times decreased thus real time inference of fixed models became
possible

In late 2010, early 2020 emerging umber of models under the RL or continual learning
paradigm, learning and inference are parallel tasks

Mid 2020 first time we may compute quality measures besides first order measures (loss,
accuracy etc.) about the models on the fly and choosing the proper models based on
their true error rate

To identify higher order quality measures let us consider the topological spaces related to
learning, focusing on Deep Structured State Space Models (SSM), Neural Ordinary
Differential Equations (ODE) and feedforward Rectified Linear Unit (ReLU) networks
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Topological spaces related to learning

Observations Error surface Hyperparameters
Learning from

pairwise comparisons binary outcomes e. g. L2, sine ?
Feedforward ReLU nets data-label pairs? e.g. Cross-entropy network structure

Deep SSMs sequences? e.g. Cross-entropy block structure
Neural ODEs sequences? ? state dim.?
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SSMs and neural ODEs

New class of neural structures based on a continuous structure usually linear dynamical
system combined with nonlinearities, no exact depth!
SSMs are state-of-the-art for long range benchmarks even beating out transformers
Neural ODEs are elegant models with adaptive depth close to SOTA on ImageNet
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Preliminaries

Problem: The learning objective is to find θ ∈ Θ such that the true risk
L(fθ) = E(x ,y)∼D[l(fθ(x), y ] is small as possible.

fθ: hypothesis e.g. feedforward ReLU NN with L layers, θ ∈ R|θ|.
l(y ′, y): loss function

Since we do not know D, we approximate the true risk by the empirical risk
LX (fθ) =

1
T

∑T
i=1 l(fθ(xi ), yi ]

new objective: minfθ∈F LX (fθ) + R(fθ)
X = {x1, ..., xT} ⊂ Rdin : observations
R(fθ): reg. term, but why we need this term?
Question: can we trust our new θ?
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Generalization gap vs. identification

How (or what) to measure?

The divergence between the optimal and the estimated parameters? The surface of a
typical ML model is not ideal to assume anything.

The difference between the true and the estimated loss? Generalization gap:
L(fθ)− LX (fθ)
Note, X is not necessary the set we used for training.

Our main goal is to derive a Probably Approximately Correct (PAC) bound

Pr(∀fθ∈FL(fθ)− LX (fθ) > R(F ,X , δ)) ≤ 1− δ

If the bound is low we may trust the model we got from the training that it will perform
similarly on unknown sample.

Question: what is R(F ,T , δ)?

Note, PAC-Bayes bounds: we know some data and/or algorithm dependent prior on the
hypothesis set
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Rademacher complexity of neural ODEs and deep SSMs

Typically for a hypothesis set: R(F ,X , δ) = O(RX (F) + log(4/δ)√
T

) where RX (F) is the

empirical Rademacher complexity of F on the set X .

Some recent results:

time independent bounded neural ODEs [Marion, 2023]: RX (F) ≤ O(∥θ∥1,∞/
√
T )

neural ODEs under stability [Racz et al., 2023]: RX (F) ≤ O(cΣ/
√
T ) where cΣ is the upper

bound of the λ-weighted H2 norm of the dynamical system.
some deep SSMs (S4,S5,LRU) w/wo GLU activations under stability [Racz et al., 2024]:

RX (F) ≤ O((µ+ c)/
√
T ) where µ ≤ KencKdec (µg1cH2 + α1)

L∏
i=2

(µgi cH1 + αi ),

c ≤ Kdec

L∑
j=1

[
L∏

i=j+1

(µgi cH1 + αi )

]
cgj with cH2 and cH1 are the upper bounds of the H2 and

H1 norm of the SSM.

The norm of the dynamical system is a key factor to derive meaningful PAC bounds.
Under stability conditions these norms exist.
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Rademacher complexity of ReLU networks

ff ReLU net with L layers [Truong, 2022]: RX (F) ≤ O((ΠL
i=1∥Wi∥∞)/

√
T )

Under some mild conditions for learning [Racz et al., 2023]:
RX (F) ≤ O(supx∈X ;θ∈B(θ0) ∥Senstan(x ; θ)∥F ) where X is the training set, θ0 is the initial

parameter and Senstan(x ; θ) =
∇θf (x ;θ)|θ

∂x

∣∣
x
= ∂2f (x ;θ)

∂θ∂x

∣∣
θ,x

Again norm of the weight matrices or the norm of tangent sensitivity are the key
factors delivering generalization bounds.

Question: are these bounds meaningful?
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Correlation and nonvacuous bounds for MNIST or CIFAR

First meaningful bound for the MNIST [Dziugaite & Roy, 2017]: 0.165 with high prob.
Recently 0.022. These are data-dependent PAC-Bayes bounds.

MNIST with CNN [Truong, 2024]: 0.162 PAC bound with and improved
Talagrand-Ledoux concentration bound.

There exists nonvacuous bounds for CIFAR and even for ImageNet too.

Tangent sensitivity correlates with the gap
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Computation of the norms I.

Still the question remains, how to compute efficiently these norms or just to estimate their
upper bounds?

For neural ODEs and SSMs: still an open problem to even estimate the norms outside of
some toy examples is hard, typical solutions are quadratic the least
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Computation of the norms II.

For ReLU nets: computation of the trivial upper bound is O(|Θ|)
For ReLU nets: the one based on tangent sensitivity

naive implementation: back propagate per sample to get the gradients and differentiate
afterwards and collect, lots of issues: memory, computational time etc.

Notice, if we consider fully connected ReLU networks we may take advantage of their sparsity
properties, but how?
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Activation regions

a neuron is active for a given input x , if its preactivation at x is positive.
for a given x the activity of each neuron defines an activation pattern, which can be
described by a {0, 1}#neurons vector
inputs (x ∈ Rd) having the same activation patterns define an activation region in the
input space

Figure: [Raghu et al., 2017]B. Daroczy (SZTAKI, Budapest, Hungary) GPU Day 2024, Budapest 05/31/2024 12 / 17



Linear regions

A deep ReLU network is a piecewise linear function.

Figure: [Hanin & Rolnick, 2019]

The more linear regions we have the more complex function we can approximate.

Number of linear regions ≤ Number of (convex!) activation regions
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Expressive power of ReLU networks

number of linear regions a deep ReLU networks can realize is exponential in depth
[Pascanu et al., 2013]

space folding [Montufar et al., 2014]

Figure: [Montufar et al., 2014]

Are these extreme configurations stable?
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Expressive power

in practice deep networks realize much less regions, even in case of memorization

Figure: Depth=3, Width = 32, MNIST with corrupted labels [Hanin & Rolnick, 2019]

Question, what is happening during training?
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Idea: focus on the active paths

Gradient structure forms paths between the input and the output neurons:

Figure: Black edges are the highest absolute valued elements in the gradient

Thus Senstan(x ; θ)i ,j =
∑

path∈P+
i,∗,j (x ;θ)

Πwl∈path,wl ̸=wj
wl where ∀x P+

i ,∗,j is the set of

corresponding active paths
P+
i ,∗,j(x ; θ) = ∪l={1,..,dout}{Pi ,l(x ; θ)|wj ∈ Pi ,l(x ; θ),∀hpi,l (x ; θ) > 0}

Based on the regions (paths!) we may avoid non zero batch size and with Jax for the
differentiation the gain in computational time is more than 20x over the naive imp.
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Conclusions

Quality monitoring of constantly learning models: nonvacuous generalization bounds
are useful, high probability upper bounds on the true error aid to decide which models to
prefer

Overparametrizaton (double descent) is not an issue as the norms are not directly
depend on the number of parameters under additional constraints (stability or
regularization)

It seems stability for SSMs and neural ODEs is just as necessary as explicit or implicit
regularization for classical models

The bounds first may seem hard to compute however if we know more about the
underlying structure we may gain a lot

Thank you!
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