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in collaboration with

▶ more than 30 research groups worldwide from condensed matter
physics, quantum chemistry, nuclear physics, quantum information
theory, applied mathematics and computer science

▶ High-Performance Computing Center Stuttgart, Germany

▶ Pacific Northwest National Laboratory (PNNL), USA

▶ National Energy Research Scientific Computing Center (NERSC),
USA

Our computer program package is used by more than 30 research groups
worldwide for more than two decades.

Recently there is also an interest by industrial partners.

▶ NVIDIA, USA

▶ SandboxAQ, USA (Google startup)

▶ Riverlane LTD, UK

▶ Furukawa Electric Institute of Technology, Japan

▶ Dynaflex LTD, Hungary



Strong correlations between electrons used by nature and in

new technologies

High Tc superconductors Single molecular magnets (SMM)

Nitrogen fixation Battery technology



Experimental realizations: optical lattices

Numerical simulations: model systems

Atoms (represented as blue spheres) pictured
in a 2D-optical lattice potential

Potential depth of the optical lattice can be tuned.

Periodicity of the optical lattice can be tuned.

Hubbard model: lattice model of interacting
electron system

H = t
∑
⟨i,j⟩,σ

c†i,σcj,σ +
U

2

∑
σ ̸=σ′

∑
i

ni,σni,σ′

t hopping amplitude
U on-site Coulomb interaction

σ ∈ ↑, ↓ spin index

Classical or quantum computers?



Discrete basis, configuration space, superposition

Possible states of a person

stands sits squats

Dimension of the local space d = 3

N persons in a room

Dimension of the configuration space: 3N ,
i.e., it scales exponentially

In quantum physics superposition is
possible:
Ex. d=2 (two states allowed)
• Two persons (at position A and
B).
• Four possible configurations.
• At position ”A” person stands or
squats with 50% probability.
• At position ”B” person stands or
squats with 50% probability.

Entangled state → quantum infor-
mation (q-dits)



Entanglement: quantum data processing

▶ Quantum computing: quantum supremacy or quantum advantage
▶ Quantum cryptography: secure communication
▶ Experimental realizations: quantum sensors (biomedical

applications), unprecedented spatial resolution and sensitivity on
atomic length scale



Tensor product approximation

State vector of a quantum system in the discrete tensor product spaces

|Ψγ⟩ =
q1∑

α1=1

. . .

qd∑
αd=1

U(α1, . . . , αd , γ) |α1⟩ ⊗ · · · ⊗ |αd⟩ ∈
d⊗

i=1

Λi :=
d⊗

i=1

Cqi ,

where span{|αi ⟩ : αi = 1 , . . . , qi} = Λi = Cqi and γ = 1, . . . ,m.

α1 α2 α3 α4 α5 α6 α7 α8 γ

U

dimHd = O(qd) Curse of dimensionality!

We seek to reduce computational
costs by parametrizing the tensors in
some data-sparse representation.

A general tensor network representa-
tion of a tensor of order 5.
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Matrix product state (MPS) representation / DMRG / TT
Affleck, Kennedy, Lieb Tagasaki (87); Fannes, Nachtergale, Werner (91), White (92),

Römmer & Ostlund (94), Vidal (03), Verstraete (04), Oseledets & Tyrtyshnikov, (09)

The tensor U is given elementwise as

U(α1, . . . , αd) =
r1∑

m1=1

. . .

rd−1∑
md−1=1

A1(α1,m1)A2(m1, α2,m2) · · ·Ad(md−1, αd).

We get d component tensors of
order 2 or 3. Scaling: m3. α1
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Calculation of ρij corresponds
to the contraction of the net-
work except at modes i and j .
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von Neumann quantum information entropy, s = −
∑

α λ2
α lnλ2

α.

Mutual information, I = si + sj − sij .

Ö.L & Sólyom, (03), Rissler, Noack, White (06)



Interactions, entanglement and correlations

H =
∑
ijαβ

Tαβ
ij c†iαcjβ +

1

2

∑
ijklαβγδ

V αβγδ
ijkl c†iαc

†
jβckγclδ ,

Applications in condensed matter physics, quantum chemistry,
nuclear physics, relativistic effects, etc
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(a) Mutual information
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(b) Single orbital entropy

open d and f shells

Strongly correlated system

Effect of environment
Boguslawski, Tecmer, Ö.L., Reiher (2012)

FeLNO
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(b) Single orbital entropy



Deep learning, AI, ML, robotic

New sensors: machines begin to interact with our world!



Towards exascale computations on supercomputers

GPU: MPS and TNS
on kilo-processor architectures:
Nemes, Barcza, Nagy, Ö.L., Szolgay, 2014

Massive parallelization
Brabec, Brandejs, Kowalski

Xanntheas, Ö.L., Veis (2020)

FeMoco cluster
[CAS(113,76)]



Centralized scheduling: unideal society
• Set of workers to generate tasks
• Set of workers to transfer tasks
• Set of workers to execute tasks

→ Workers are threads
→ Transfer: IO communication
→ CPU, GPU, FPGA units

▶ Central scheduler has to organize the full workflow, measure
complexity of tasks, distribute tasks, check execution etc

▶ Central scheduler envisions the global aim & wants to accomplish it
▶ Tasks: several millions of independent tensor and matrix operations



Centralized scheduling: Huge overhead, units can be idle

• Central scheduler performs lot of measurements, estimations,
communication to rearrange tasks and workers → huge overhead

▶ Central scheduler cannot see everything in a given moment
→ workers can be idle

▶ Too much workload on scheduler → inefficient scheduling, tasks can
pile up partially



Self motivated workers → ideal ”team-like” society
• Central unit: Contractor, contract book (only meta-data
communicated, boolean-like bookkeeping flags)
• Everybody is motivated to achieve global aim



Novel algorithmic solutions A. Menczer, ÖL (2023)
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Boosting the effective performance via non-Abelian symmetries
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• New mathematical model for parallelization → felxibe scaling

• DSU(2) = 24576 → DU(1) = 216 → FCI solution



Boosting performance via AI accelerators. Wall time: D3 → D

1k 2k 3k 4k 5k 6k 7k 8k

D

0

20

40

60

80

100

120

P
e
rf

o
rm

a
n
c
e
 i
n
 T

F
L
O

P
S

2.3k

4.8k

7.2k

10.6k

15.5k

1.1k

2.3k

4.6k

7.0k

10.6k

13.2k

15.4k

21.7k

CAS(18,18) CAS(14,28) CAS(54,54)

CAS(113,76) CAS(18,18)
80GB

CAS(14,28)
80GB

CAS(54,54)
80GB

CAS(113,76)
80GB FP64 • A factor of 40 speedup

compared to a single node
with 128 cores
→ flexible scaling

• 116 TFLOPS > 76
TFLOPS of the FP64 limit
of NVIDIA → utilization of
highly specialized tensor core
units (TCU)

• Power consumption re-
duced by a factor of 5 to 8
→ Green DMRG

FeMoco

dimH = 2.88× 1036

• NVIDIA DGX H100 and Grace Hopper GH200: Testing performance up
to ∼ 240 TFLOPS in collab with NVIDIA and SandboxAQ
M. van Damme, A. Menczer, M. Ganahl, J. Hammond, Ö.L

• Combination of our MPI and GPU kernels: → petascale computing.



Reducing D3 scaling to linear scaling
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• New model to utilize NVIDIA D2D links. A. Menczer ÖL (unpublished 2023)

• NVIDIA DGX H100 and Grace Hopper GH200:
Testing performance up to ∼ 240 TFLOPS in collab with NVIDIA and
SandboxAQ M. van Damme, A. Menczer, M. Ganahl, J. Hammond, Ö.L

• Combination of our MPI and GPU kernels:
multiNode-multiGPU → petascale computing. A. Menczer ÖL (unpublished

2023)



Maximum computational complexity for 2D t − t ′ − V model
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• inset: scaling of the prefactor as
a function of system size N with
fitted exponents 0.53 and 1.85 for
the real space and for the opti-
mized basis, respectively.

10
0

10
5

-31

-30

-29

-28

512

1024

4096

8192

256
512

2048
8192

6 6

a) rs

rs(su2)

opt

10
3

10
4

10
0

10
5 b)

0 5000 10000
0

20

40

60

80

100

c)

10
3

10
4

10
0

10
1

10
2

d)

• Half-filled 6 × 6 Hubbard
model at U = 4 on a torus ge-
ometry
• Performance in TFLOPS
• Time in minutes



Our TNS/DMRG code will be used as one of the benchmarks





Conclusion

TNS methods + concepts of QIT + AI motivated hardware advances

finally facilitates research on strongly correlated real enzymes and materials

via exascale computation

Workshop: Recent progress on tensor network methods, April 22-25,
2024 TUM Institute for Advanced Study, Munich

Current work: DMRG+ORCA: 536 electrons on 1368 orbitals
(Icosacene).

Supports: Lendület grant of the Hungarian Academy of Sciences, the Hungarian

National Research, Development and Innovation Office TKP2021-NVA-04,

Hungarian Quantum Technology National Excellence Program, Quantum

Information National Laboratory of Hungary, European Research Area(ERA),

Alexander von Humboldt Foundation (Germany), Hans Fischer Senior

Fellowship programme (TUM-IAS, Germany), SPEC, DOE, (PNNL, USA)

Thank you for your attention


