
HIGH-PERFORMANCE MULTI-GPU EEG SIGNAL
PROCESSING

Bálint Tóth
Zoltán Juhász

University of Pannonia,
Department of Electrical Engineering and Information Systems

AIM OF STUDY & MOTIVATION

• Implementation of EEG preprocessing steps that can be used on pre-
exascale supercomputer architectures

• Selected DSP algorithms:
• Convolution in time domain
• Wavelet transform in time domain

• Main goals:
• High computational performance
• Scalability
• Efficient use of the underlying GPU architecture

2

EEG SIGNAL PROCESSING

• Scientific EEG experiments in general
• High temporal resolution (millisecond range)
• High sampling rate: 1-30 kHz
• Many channels (electrodes): 64 - 300
• High amount of data: several GB per

measurement

• Processing pipeline
• Many complex DSP algorithms in sequence

• Time consuming on common hardware
• Can take several hours for one subject
• For group measurements, processing time

can reach days

3

RELATED TECHNOLOGIES

• NVIDIA CUDA
• To enable extreme parallel computation
• Hierarchical memory and thread model

• Message Passing Interface (MPI)
• Communication for distributed memory

systems

• NVIDIA A100 Datacentre GPU
• CUDA Core count: 6912
• SM count: 108
• Shared memory size: 160 KB
• Device memory size: 40GB
• Device memory bandwidth: 1,55 GB/s
• Performance of one GPU: 19,5 TFlop/s

NVIDIA A100 Streaming Multiprocessor
4

NVIDIA A100 GPU ARCHITECTURE

5

EEG PREPROCESSING
OPERATIONS

• Filtering
• Convolution
• Fourier transform

• Time-Frequency analysis
• Wavelet transform
• Hilbert transform
• Short Time Fourier transform

• Spectral density estimation
• Fourier transform
• Wavelet transform
• Convolution

EEGLAB preprocessing pipeline

6

WAVELET TRANSFORM

• Operation
ஶ

ିஶ

• Morlet basis-wavelet: బ
೟మ

మ

• In the case of multiple frequencies, the
basis wavelet needs to be scaled

• Convolution for each frequency of each
channel:

௙

ேିଵ

௡ୀ଴

• Filterbank structure

Morlet basis wavelet

7

BASE ALGORITHM

• Multi-channel signal
• Multiple frequency components

• Increment: ௙೘ೌೣି௙೘೔೙

ி

• Basis wavelet length depends on the
sampling rate

8

for c := 0 to C do
 for f := fmin to F do
 for m := 0 to M+N-1 do
 re := 0.0
 im := 0.0
 for n := 0 to N-1 do
 re += w_re[c,f,n] * s[c,m-n]
 im += w_im[c,f,n] * s[c,m-n]
 result[c,f,m] :=
 sqrt(re*re + im*im)
 end
 end
 end
end

C – number of channels
M – data points in one channel
F – number of frequency components
N – length of the basis wavelet

for c := 0 to C do
 for f := fmin to F do
 for m := 0 to M+N-1 do
 re := 0.0
 im := 0.0
 for n := 0 to N-1 do
 re += w_re[c,f,n] * s[c,m-n]
 im += w_im[c,f,n] * s[c,m-n]
 result[c,f,m] :=
 sqrt(re*re + im*im)
 end
 end
 end
end

• Thread hierarchy:
• 2D input, 3D output
• 2D Grid with row-major mapping
• Each element in the result matrix is mapped

to a thread
• Channels are mapped to rows
• Spectra for each frequency components are

mapped to columns

• Memory usage:
• Basis wavelet too long for shared memory
• Wavelet filter bank is generated on the GPU

• Avoiding unnecessary CPU usage and host –
device copy

SINGLE-GPU IMPLEMENTATION

9

• Main goal: minimise the amount of data
that needs to be sent between GPUs

• CUDA-aware MPI
• Data can be sent directly in between GPU

cards’ DRAM with the same API calls
• Displacement buffer corruption for large

inputs
• Manual collective communication

• Asymmetric distribution scheme
• Whole measurement data is divided into

equal-length segments
• Requires overlap for numerical correctness
• Number of GPU cards is not strictly bound by

the problem size
• Works well for convolution

MULTI-GPU COMMUNICATION SCHEMES

10

MULTI-GPU COMMUNICATION SCHEMES

• Channel based distribution scheme
• Channels are assigned equally to GPUs
• Number of GPUs is bound by the number of

channels
• Less unnecessary data transfers for long

convolution windows

• Feasible option for wavelet transform
• Kernel can be modified for single channel

computation resulting in a more efficient
solution

• For group measurements, data from
multiple subjects can be processed
simultaneously

11

MEASUREMENT RESULTS

• Devices used:
• NVIDIA GeForce RTX 3050 – individual kernel

performance measurements
• Komondor supercomputer (1 – 16 NVIDIA A100

GPU) – multi-GPU runtime measurements

• Test data
• 64 – 128 channels
• 2 million data points per channel
• Approximately 15 minutes of 2KHz EEG

measurement data
• 65536 data points (30 seconds) in case of Wavelet

transform
• Randomly generated vector

• MATLAB Signal Processing Toolbox was used
to verify the correctness of the
implementations

Example of a frequency-modulated test signal

Scalogram of the test signal

12

WAVELET TRANSFORM KERNEL PERFORMANCE

• Roofline model:
• Performance in relation

to arithmetic intensity

• Wavelet kernel is
compute bound

• Performance increases
by adding more
channels

FP32 and FP64 roofline plot for single channel

FP32 and FP64 roofline plot for 1024 channels

FP64

FP64

FP32

FP32

13

WAVELET TRANSFORM SCALABILITY

Total runtime:
• From the start of distribution
• To the end of collection

• Kernel runtime decreases with more GPUs
• The size of the task allows strong scaling
• In case of the multi-GPU implementation, computation time is

dominant
• Communication time is a near-constant 1 second

14

CONVOLUTION

• Kernel is on the edge of memory
boundedness

• Performance increases by adding
more channels

• Kernel runtime for one GPU
decreases proportionally to the
number of GPU cards

• Communication time is dominant
• The algorithm is scalable, it can be

used as part of a pipeline

15

SUMMARY

• Conclusion:
• Two working DSP algorithms designed for single-GPU use
• Different communication schemes for multi-GPU use
• Both algorithms can be scaled efficiently in supercomputer environments
• MPI is a serious scalability bottleneck for large problem sizes

• Further development:
• Elimination of MPI in favour of direct GPU-GPU communication with NVIDIA

frameworks and distributed file system reading
• Integration to the rest of the EEG preprocessing pipeline

16

