# HIGH-PERFORMANCE MULTI-GPU EEG SIGNAL PROCESSING

Bálint Tóth Zoltán Juhász

University of Pannonia,

Department of Electrical Engineering and Information Systems

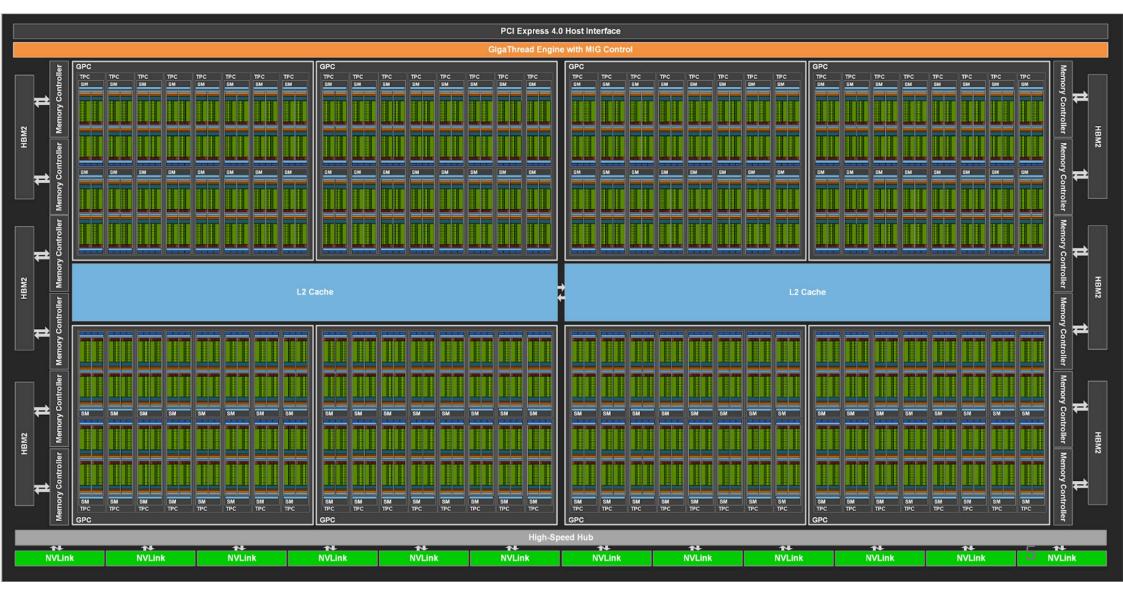
#### **AIM OF STUDY & MOTIVATION**

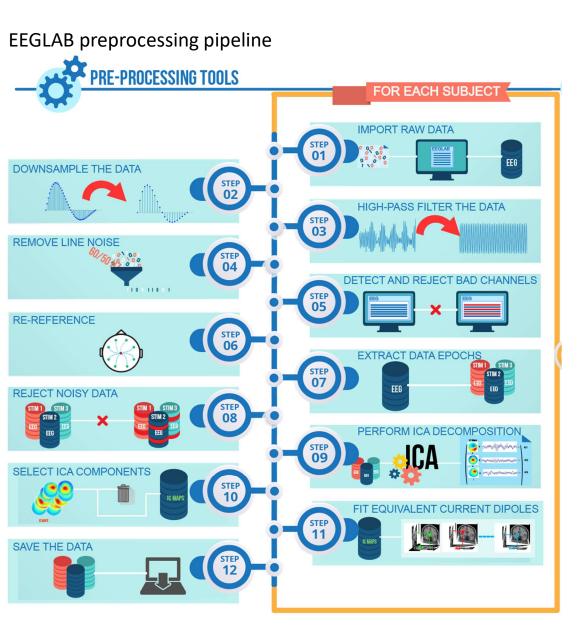
- Implementation of EEG preprocessing steps that can be used on preexascale supercomputer architectures
- Selected DSP algorithms:
  - Convolution in time domain
  - Wavelet transform in time domain
- Main goals:
  - High computational performance
  - Scalability
  - Efficient use of the underlying GPU architecture

# **EEG SIGNAL PROCESSING**

- Scientific EEG experiments in general
  - High temporal resolution (millisecond range)
  - High sampling rate: 1-30 kHz
  - Many channels (electrodes): 64 300
  - High amount of data: several GB per measurement
- Processing pipeline
  - Many complex DSP algorithms in sequence
- Time consuming on common hardware
  - Can take several hours for one subject
  - For group measurements, processing time can reach days




# **RELATED TECHNOLOGIES**


- NVIDIA CUDA
  - To enable extreme parallel computation
  - Hierarchical memory and thread model
- Message Passing Interface (MPI)
  - Communication for distributed memory systems
- NVIDIA A100 Datacentre GPU
  - CUDA Core count: 6912
  - SM count: 108
  - Shared memory size: 160 KB
  - Device memory size: 40GB
  - Device memory bandwidth: 1,55 GB/s
  - Performance of one GPU: 19,5 TFlop/s

|                                                                                                                      | _                                                            | _                                                                                          | _                                                                   | _                                                                                      | _                          | _                     | L1 Instru |    | n Cac                                                                | ne                                                                       | _                                                                         | _                                                                                   | _                                                                  | _                                                                                               | _                        | _              |        |  |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------|-----------------------|-----------|----|----------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------|----------------|--------|--|
|                                                                                                                      |                                                              | L0 Ir                                                                                      | nstruct                                                             | ion C                                                                                  | ache                       |                       |           |    |                                                                      |                                                                          |                                                                           | L0 In                                                                               | struc                                                              | tion C                                                                                          | ache                     |                |        |  |
| Warp Scheduler (32 thread/clk)<br>Dispatch Unit (32 thread/clk)                                                      |                                                              |                                                                                            |                                                                     |                                                                                        |                            |                       |           |    | Warp Scheduler (32 thread/clk)                                       |                                                                          |                                                                           |                                                                                     |                                                                    |                                                                                                 |                          |                |        |  |
|                                                                                                                      | Di                                                           | spatch                                                                                     | n Unit (                                                            | (32 th                                                                                 | read/c                     | :lk)                  |           |    |                                                                      |                                                                          | Di                                                                        | spatch                                                                              | 1 Unit                                                             | (32 th                                                                                          | read/o                   | :lk)           |        |  |
|                                                                                                                      | Reg                                                          | gister                                                                                     | File (1                                                             | 6,384                                                                                  | 4 x 32                     | -bit)                 |           |    |                                                                      |                                                                          | Reg                                                                       | ister                                                                               | File (1                                                            | 16,384                                                                                          | 4 x 32                   | !-bit)         |        |  |
| INT32 INT32                                                                                                          | FP32                                                         | FP32                                                                                       | FP                                                                  | 64                                                                                     |                            |                       |           |    | INT32                                                                | INT32                                                                    | FP32                                                                      | FP32                                                                                | FP                                                                 | 64                                                                                              |                          |                |        |  |
| INT32 INT32                                                                                                          | FP32                                                         | FP32                                                                                       | FP                                                                  | 64                                                                                     |                            |                       |           |    | INT32                                                                | INT32                                                                    | FP32                                                                      | FP32                                                                                | FP                                                                 | 64                                                                                              |                          |                |        |  |
| INT32 INT32                                                                                                          | FP32                                                         | FP32                                                                                       | FP                                                                  | 64                                                                                     |                            |                       |           |    | INT32                                                                | INT32                                                                    | FP32                                                                      | FP32                                                                                | FP                                                                 | 64                                                                                              |                          |                |        |  |
| INT32 INT32                                                                                                          | IT32 INT32 FP32 FP32                                         | FP32                                                                                       | FP64                                                                |                                                                                        | TENSOR CORE                |                       |           |    | INT32 INT32                                                          |                                                                          | FP32                                                                      | FP32 FP32                                                                           |                                                                    | FP64                                                                                            |                          | TENSOR CORE    |        |  |
| INT32 INT32                                                                                                          | FP32                                                         | FP32                                                                                       | FP                                                                  | 64                                                                                     | TE                         | INSO                  | RCORE     |    | INT32                                                                | INT32                                                                    | FP32                                                                      | FP32                                                                                | FP                                                                 | 64                                                                                              | TE                       | INSO           | RCORE  |  |
| INT32 INT32                                                                                                          | FP32                                                         | FP32                                                                                       | FP                                                                  | 64                                                                                     |                            |                       |           |    | INT32                                                                | INT32                                                                    | FP32                                                                      | FP32                                                                                | FP                                                                 | 64                                                                                              |                          |                |        |  |
| INT32 INT32                                                                                                          | FP32                                                         | FP32                                                                                       | FP                                                                  | 64                                                                                     |                            |                       |           |    | INT32                                                                | INT32                                                                    | FP32                                                                      | FP32                                                                                | FP                                                                 | 64                                                                                              |                          |                |        |  |
| INT32 INT32                                                                                                          | FP32                                                         | FP32                                                                                       | FP                                                                  | 64                                                                                     |                            |                       |           |    | INT32                                                                | INT32                                                                    | FP32                                                                      | FP32                                                                                | FP                                                                 | 64                                                                                              |                          |                |        |  |
| LD/ LD/<br>ST ST                                                                                                     | LD/<br>ST                                                    | LD/<br>ST                                                                                  | LD/<br>ST                                                           | LD/<br>ST                                                                              | LD/<br>ST                  | LD/<br>ST             | SFU       |    | LD/<br>ST                                                            | LD/<br>ST                                                                | LD/<br>ST                                                                 | LD/<br>ST                                                                           | LD/<br>ST                                                          | LD/<br>ST                                                                                       | LD/<br>ST                | LD/<br>ST      | SFU    |  |
|                                                                                                                      |                                                              |                                                                                            |                                                                     |                                                                                        |                            |                       |           |    |                                                                      |                                                                          |                                                                           |                                                                                     |                                                                    |                                                                                                 |                          |                |        |  |
| -                                                                                                                    |                                                              | 1.0.1                                                                                      |                                                                     | ion C                                                                                  | acho                       |                       |           | ╎┌ | _                                                                    |                                                                          |                                                                           | 1010                                                                                |                                                                    | tion C                                                                                          | acho                     |                |        |  |
|                                                                                                                      | Wa                                                           |                                                                                            | nstruct<br>Ieduler                                                  | _                                                                                      |                            | /clk)                 |           | jĻ |                                                                      | _                                                                        | Wai                                                                       | _                                                                                   | istruci<br>edule                                                   |                                                                                                 |                          | /clk)          |        |  |
|                                                                                                                      |                                                              | rp Sch                                                                                     | nstruct<br>Ieduler<br>1 Unit (                                      | (32 t                                                                                  | hread                      |                       |           |    |                                                                      |                                                                          |                                                                           | L0 In<br>rp Sch<br>spatch                                                           | edule                                                              | r (32 t                                                                                         | hread                    |                |        |  |
|                                                                                                                      | Di                                                           | rp Sch<br>spatci                                                                           | eduler                                                              | (32 ti<br>(32 th                                                                       | hread/<br>read/c           | :lk)                  |           |    |                                                                      |                                                                          | Di                                                                        | rp Sch                                                                              | edule<br>1 Unit                                                    | r (32 t<br>(32 th                                                                               | hread                    | :lk)           |        |  |
| INT32 INT32                                                                                                          | Di<br>Reç                                                    | rp Sch<br>spatci                                                                           | eduler<br>1 Unit (                                                  | (32 th<br>(32 th<br>(6,384                                                             | hread/<br>read/c           | :lk)                  |           |    | INT32                                                                | INT32                                                                    | Di                                                                        | rp Sch<br>spatch<br>jister                                                          | edule<br>1 Unit<br>File (1                                         | r (32 t<br>(32 th                                                                               | hread                    | :lk)           |        |  |
| INT32 INT32                                                                                                          | Di<br>Reg<br>FP32                                            | rp Sch<br>spatch<br>gister                                                                 | eduler<br>h Unit (<br>File (1                                       | (32 th<br>(32 th<br>(6,384<br>64                                                       | hread/<br>read/c           | :lk)                  |           |    | INT32<br>INT32                                                       |                                                                          | Di<br>Reg                                                                 | rp Sch<br>spatch<br>jister<br>FP32                                                  | edule<br>1 Unit<br>File (1                                         | r (32 th<br>(32 th<br>16,384<br>64                                                              | hread                    | :lk)           |        |  |
|                                                                                                                      | Di<br>Reg<br>FP32<br>FP32                                    | rp Sch<br>spatch<br>gister<br>FP32                                                         | File (1                                                             | (32 th<br>(32 th<br>(6,384<br>64<br>64                                                 | hread/<br>read/c           | :lk)                  |           |    |                                                                      | INT32                                                                    | Di<br>Reg<br>FP32                                                         | rp Sch<br>spatch<br>jister<br>FP32<br>FP32                                          | edule<br>1 Unit<br>File (1<br>FP<br>FP                             | r (32 th<br>(32 th<br>16,384<br>64                                                              | hread                    | :lk)           |        |  |
| INT32 INT32                                                                                                          | Di<br>Reg<br>FP32<br>FP32<br>FP32                            | rp Sch<br>spatch<br>gister<br>FP32<br>FP32                                                 | eduler<br>1 Unit (<br>File (1<br>FP                                 | (32 th<br>(32 th<br>(6,384<br>64<br>64<br>64                                           | hread/<br>read/c<br>4 x 32 | :lk)<br>:-bit)        |           |    | INT32                                                                | INT32<br>INT32                                                           | Di<br>Reg<br>FP32<br>FP32                                                 | rp Sch<br>spatch<br>jister<br>FP32<br>FP32<br>FP32                                  | edule<br>1 Unit<br>File (1<br>FP<br>FP                             | r (32 th<br>(32 th<br>16,384<br>64<br>64<br>64                                                  | hread<br>read/<br>4 x 32 | elk)<br>2-bit) |        |  |
| INT32 INT32<br>INT32 INT32                                                                                           | Di<br>Reg<br>FP32<br>FP32<br>FP32<br>FP32                    | rp Sch<br>spatch<br>jister<br>FP32<br>FP32<br>FP32                                         | eduler<br>1 Unit (<br>File (1<br>FP<br>FP                           | (32 th<br>(32 th<br>(6,384<br>64<br>64<br>64<br>64                                     | hread/<br>read/c<br>4 x 32 | :lk)<br>:-bit)        | R CORE    |    | INT32                                                                | INT32<br>INT32<br>INT32                                                  | Di<br>Reg<br>FP32<br>FP32<br>FP32<br>FP32                                 | rp Sch<br>spatch<br>ister<br>FP32<br>FP32<br>FP32<br>FP32                           | edule<br>1 Unit<br>File (1<br>FP<br>FP                             | r (32 th<br>(32 th<br>16,38<br>64<br>64<br>64<br>64                                             | hread<br>read/<br>4 x 32 | elk)<br>2-bit) | R CORE |  |
| INT32 INT32<br>INT32 INT32<br>INT32 INT32                                                                            | Di<br>Reg<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32            | rp Sch<br>spatch<br>gister<br>FP32<br>FP32<br>FP32<br>FP32                                 | eduler<br>1 Unit (<br>File (1<br>FPI<br>FPI<br>FPI                  | (32 th<br>(32 th<br>(6,384<br>64<br>64<br>64<br>64<br>64                               | hread/<br>read/c<br>4 x 32 | :lk)<br>:-bit)        | R CORE    |    | INT32<br>INT32<br>INT32                                              | INT32<br>INT32<br>INT32<br>INT32                                         | Di<br>Reg<br>FP32<br>FP32<br>FP32<br>FP32                                 | rp Sch<br>spatch<br>ister<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32                   | edule<br>Unit<br>File (1<br>FP<br>FP<br>FP<br>FP                   | r (32 th<br>(32 th<br>16,38<br>64<br>64<br>64<br>64                                             | hread<br>read/<br>4 x 32 | elk)<br>2-bit) | R CORE |  |
| INT32 INT32<br>INT32 INT32<br>INT32 INT32<br>INT32 INT32                                                             | Di<br>Reg<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32    | rp Sch<br>spatch<br>gister<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32                         | File (1<br>File (1<br>FP<br>FP<br>FP<br>FP                          | (32 th<br>(32 th<br>(32 th<br>64<br>64<br>64<br>64<br>64<br>64                         | hread/<br>read/c<br>4 x 32 | :lk)<br>:-bit)        | R CORE    |    | INT32<br>INT32<br>INT32<br>INT32                                     | INT32<br>INT32<br>INT32<br>INT32<br>INT32                                | PP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32                              | rp Sch<br>spatch<br>ister<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32           | edule<br>Unit<br>File (1<br>FP<br>FP<br>FP<br>FP                   | r (32 th<br>(32 th<br>16, 38<br>64<br>64<br>64<br>64                                            | hread<br>read/<br>4 x 32 | elk)<br>2-bit) | R CORE |  |
| INT32 INT32<br>INT32 INT32<br>INT32 INT32<br>INT32 INT32<br>INT32 INT32                                              | Di<br>Reg<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32    | rp Sch<br>spatch<br>gister<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32                 | File (1<br>File (1<br>FPI<br>FPI<br>FPI<br>FPI                      | (32 th<br>(32 th<br>(32 th<br>(6,384<br>64<br>64<br>64<br>64<br>64<br>64<br>64         | hread/<br>read/c<br>4 x 32 | :lk)<br>:-bit)        | R CORE    |    | INT32<br>INT32<br>INT32<br>INT32<br>INT32                            | INT32<br>INT32<br>INT32<br>INT32<br>INT32<br>INT32                       | Dis<br>Reg<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32                | rp Sch<br>spatch<br>ister I<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32 | edule<br>Unit<br>File (1<br>FP<br>FP<br>FP<br>FP                   | r (32 th<br>(32 th<br>16, 38)<br>64<br>64<br>64<br>64<br>64<br>64                               | hread<br>read/<br>4 x 32 | elk)<br>2-bit) | R CORE |  |
| INT32 INT32<br>INT32 INT32<br>INT32 INT32<br>INT32 INT32<br>INT32 INT32<br>INT32 INT32                               | Di<br>Reg<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32    | rp Sch<br>spatch<br>gister<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32         | File (1                                                             | (32 th<br>(32 th<br>(32 th<br>(6,384<br>64<br>64<br>64<br>64<br>64<br>64<br>64         | hread/<br>read/c<br>4 x 32 | :lk)<br>:-bit)        | R CORE    |    | INT32<br>INT32<br>INT32<br>INT32<br>INT32<br>INT32                   | INT32<br>INT32<br>INT32<br>INT32<br>INT32<br>INT32                       | Di<br>Reg<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32                 | rp Sch<br>spatch<br>ister I<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32 | edule<br>Unit<br>File (1<br>FP<br>FP<br>FP<br>FP<br>FP             | r (32 th<br>(32 th<br>16, 38)<br>64<br>64<br>64<br>64<br>64<br>64                               | hread<br>read/<br>4 x 32 | elk)<br>2-bit) | R CORE |  |
| INT32 INT32<br>INT32 INT32<br>INT32 INT32<br>INT32 INT32<br>INT32 INT32<br>INT32 INT32<br>INT32 INT32<br>INT32 INT32 | FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32 | rp Sch<br>spatch<br>jister<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32 | File (1<br>File (1<br>FPI<br>FPI<br>FPI<br>FPI<br>FPI<br>FPI<br>FPI | (32 th<br>(32 th<br>6,384<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>10/ | hread/c<br>4 x 32<br>TE    | Ik)<br>I-bit)<br>INSO |           |    | INT32<br>INT32<br>INT32<br>INT32<br>INT32<br>INT32<br>INT32<br>INT32 | INT32<br>INT32<br>INT32<br>INT32<br>INT32<br>INT32<br>INT32<br>LD/<br>ST | Di<br>Reg<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32 | rp Sch<br>spatch<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32<br>FP32    | edule<br>Unit<br>File (1<br>FP<br>FP<br>FP<br>FP<br>FP<br>FP<br>FP | r (32 th<br>(32 th<br>16,38-<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>64<br>10/ | hread/4<br>4 x 32<br>TE  | ENSO           |        |  |

NVIDIA A100 Streaming Multiprocessor

#### **NVIDIA A100 GPU ARCHITECTURE**





#### EEG PREPROCESSING OPERATIONS

- Filtering
  - Convolution
  - Fourier transform

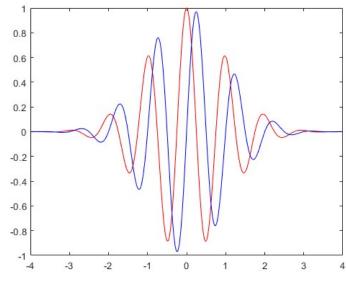
# • Time-Frequency analysis

- Wavelet transform
- Hilbert transform
- Short Time Fourier transform

# Spectral density estimation

- Fourier transform
- Wavelet transform
- Convolution

#### WAVELET TRANSFORM


Operation

$$W\{s(t)\}(T,\tau) = \int_{-\infty}^{\infty} s(t)\Psi(\frac{t-\tau}{T}) dt$$

- Morlet basis-wavelet:  $\Psi(t) = e^{j\omega_0 t} e^{-\frac{t^2}{2}}$
- In the case of multiple frequencies, the basis wavelet needs to be scaled
- Convolution for each frequency of each channel:

$$S[m] = \sum_{n=0}^{N-1} w_f[n] \cdot s[m-n]$$

• Filterbank structure



Morlet basis wavelet

### **BASE ALGORITHM**

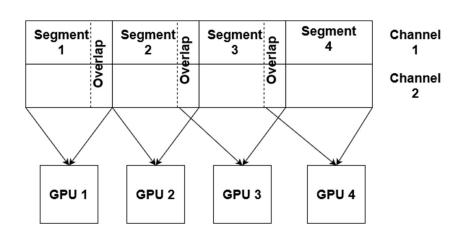
- Multi-channel signal
- Multiple frequency components
  - Increment:  $\frac{f_{max}-f_{min}}{F}$
- Basis wavelet length depends on the sampling rate

$$O(C \cdot F \cdot (M + N - 1))$$

C – number of channels M – data points in one channel F – number of frequency components N – length of the basis wavelet

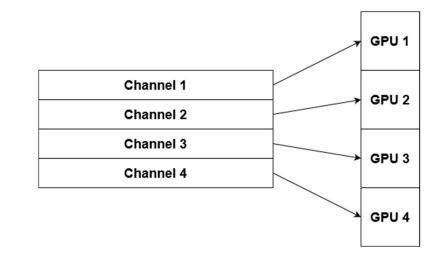
```
for c := 0 to C do
for f := fmin to F do
    for m := 0 to M+N-1 do
        re := 0.0
        im := 0.0
        for n := 0 to N-1 do
            re += w_re[c,f,n] * s[c,m-n]
            im += w_im[c,f,n] * s[c,m-n]
            result[c,f,m] :=
                  sqrt(re*re + im*im)
        end
    end
end
```

end


### SINGLE-GPU IMPLEMENTATION

- Thread hierarchy:
  - 2D input, 3D output
  - 2D Grid with row-major mapping
  - Each element in the result matrix is mapped to a thread
  - Channels are mapped to rows
  - Spectra for each frequency components are mapped to columns
- Memory usage:
  - Basis wavelet too long for shared memory end
  - Wavelet filter bank is generated on the GPU
    - Avoiding unnecessary CPU usage and host device copy

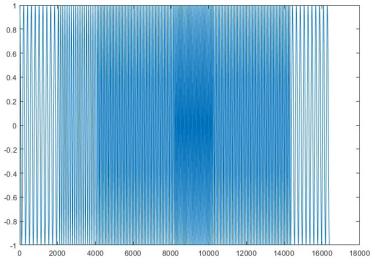
end end


# **MULTI-GPU COMMUNICATION SCHEMES**

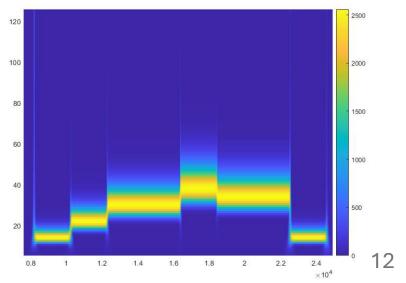
- Main goal: minimise the amount of data that needs to be sent between GPUs
- CUDA-aware MPI
  - Data can be sent directly in between GPU cards' DRAM with the same API calls
  - Displacement buffer corruption for large inputs
  - Manual collective communication
- Asymmetric distribution scheme
  - Whole measurement data is divided into equal-length segments
  - Requires overlap for numerical correctness
  - Number of GPU cards is not strictly bound by the problem size
  - Works well for convolution



#### **MULTI-GPU COMMUNICATION SCHEMES**


- Channel based distribution scheme
  - Channels are assigned equally to GPUs
  - Number of GPUs is bound by the number of channels
  - Less unnecessary data transfers for long convolution windows
- Feasible option for wavelet transform
  - Kernel can be modified for single channel computation resulting in a more efficient solution
  - For group measurements, data from multiple subjects can be processed simultaneously

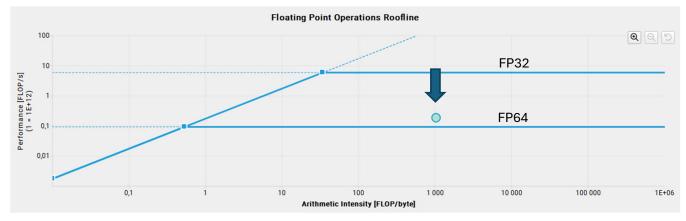



### **MEASUREMENT RESULTS**

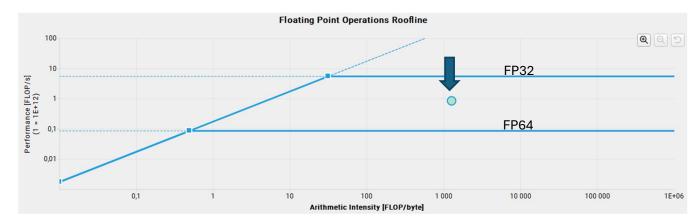
- Devices used:
  - NVIDIA GeForce RTX 3050 individual kernel performance measurements
  - Komondor supercomputer (1 16 NVIDIA A100 GPU) – multi-GPU runtime measurements
- Test data
  - 64 128 channels
  - 2 million data points per channel
  - Approximately 15 minutes of 2KHz EEG measurement data
  - 65536 data points (30 seconds) in case of Wavelet transform
  - Randomly generated vector
- MATLAB Signal Processing Toolbox was used to verify the correctness of the implementations

#### Example of a frequency-modulated test signal




#### Scalogram of the test signal



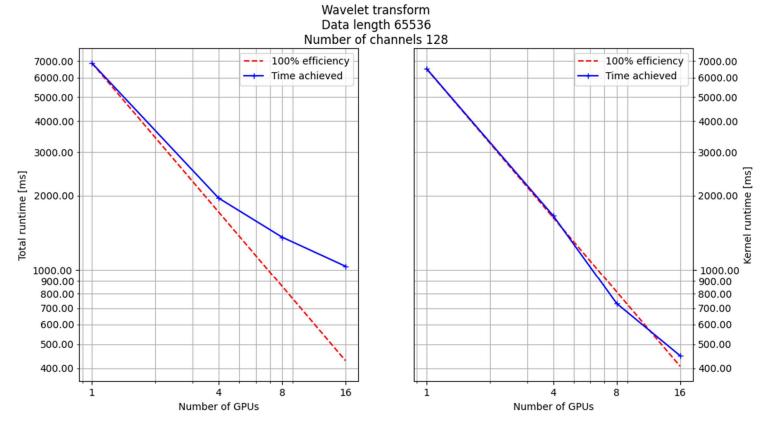

# WAVELET TRANSFORM KERNEL PERFORMANCE

- Roofline model:
  - Performance in relation to arithmetic intensity
- Wavelet kernel is compute bound
- Performance increases by adding more channels

FP32 and FP64 roofline plot for single channel

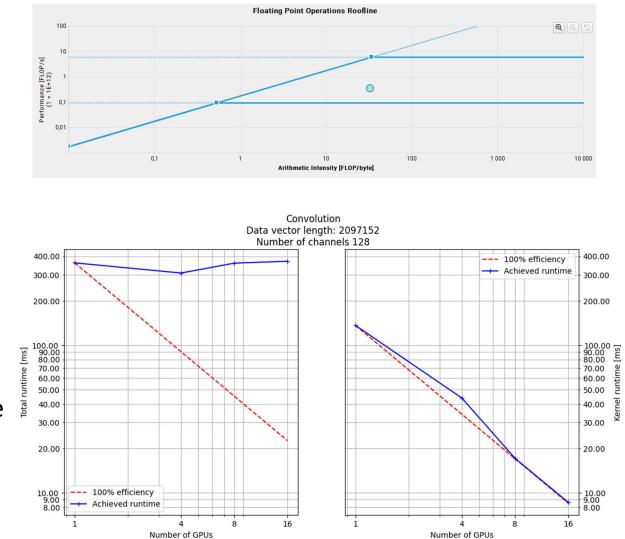


#### FP32 and FP64 roofline plot for 1024 channels




### WAVELET TRANSFORM SCALABILITY

#### Total runtime:


- From the start of distribution
- To the end of collection

- Kernel runtime decreases with more GPUs
- The size of the task allows strong scaling
- In case of the multi-GPU implementation, computation time is dominant
- Communication time is a near-constant 1 second



# CONVOLUTION

- Kernel is on the edge of memory boundedness
- Performance increases by adding more channels
- Kernel runtime for one GPU decreases proportionally to the number of GPU cards
- Communication time is dominant
- The algorithm is scalable, it can be used as part of a pipeline



15

# SUMMARY

- Conclusion:
  - Two working DSP algorithms designed for single-GPU use
  - Different communication schemes for multi-GPU use
  - Both algorithms can be scaled efficiently in supercomputer environments
  - MPI is a serious scalability bottleneck for large problem sizes
- Further development:
  - Elimination of MPI in favour of direct GPU-GPU communication with NVIDIA frameworks and distributed file system reading
  - Integration to the rest of the EEG preprocessing pipeline