HIGH-PERFORMANCE MULTI-GPU EEG SIGNAL
PROCESSING

Balint Toth

Zoltan Juhasz

University of Pannonia,

Department of Electrical Engineering and Information Systems



AIM OF STUDY & MOTIVATION

* Implementation of EEG preprocessing steps that can be used on pre-
exascale supercomputer architectures

 Selected DSP algorithms:
e Convolution in time domain
 Wavelet transform in time domain

* Main goals:
* High computational performance
* Scalability
* Efficient use of the underlying GPU architecture



EEG SIGNAL PROCESSING

* Scientific EEG experiments in general
* High temporal resolution (millisecond range)
* High sampling rate: 1-30 kHz
 Many channels (electrodes): 64 - 300

* High amount of data: several GB per
measurement

* Processing pipeline

* Many complex DSP algorithms in sequence WWWMMWWWWWWMWW

* Time consuming on common hardware
* Can take several hours for one subject
* For group measurements, processing time



RELATED TECHNOLOGIES
* NVIDIA CUDA

* To enable extreme parallel computation
* Hierarchical memory and thread model

* Message Passing Interface (MPI)

 Communication for distributed memory
systems

* NVIDIA A100 Datacentre GPU
* CUDA Core count: 6912
SM count: 108
Shared memory size: 160 KB
Device memory size: 40GB
Device memory bandwidth: 1,55 GB/s
Performance of one GPU: 19,5 TFlop/s
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NVIDIA A100 GPU ARCHITECTURE

PCI Express 4.0 Host Interface
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EEGLAB preprocessing pipeline EEG PREPROCESSING

. ﬁ PRE-PROCESSING TOOLS OPERATIONS
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WAVELET TRANSFORM

* Operation

oo

t—1
Wi{s(®)}T,7) = Js(t)‘P(T) dt

o | .
* Morlet basis-wavelet: P(t) = e/%ofe 2

* |n the case of multiple frequencies, the
basis wavelet needs to be scaled

* Convolution for each frequency of each
channel:

N-1
Sm] = Z we[n] - s[m — n]
n=0

e Filterbank structure
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BASE ALGORITHM

* Multi-channel signal

: for ¢ := 0 to C do
* Multiple frequency components e
e Increment: [max—fmin for m := @ to M#N-1 do
F re := 0.0
* Basis wavelet length depends on the im := 0.0
. for n := 0 to N-1 do
Sampllng rate re += w_re[c,f,n] * s[c,m-n]
im += w_im[c,f,n] * s[c,m-n]
result[c,f,m] :=
O(C F (M + N 1)) sgrt(re*re + im*im)
B o end
d
C — number of channels end =
M — data points in one channel end

F — number of frequency components
N — length of the basis wavelet



SINGLE-GPU IMPLEMENTATION

* Thread hierarchy:

e 2D input, 3D output for ¢ := @ to C do
. . . . for £ := fmin to F do
e 2D Grid with row-major mapping for m ie ® to MN-1 do
* Each element in the result matrix is mapped re := g-g
im := .
to a thread for n := @ to N-1 do
* Channels are mapped to rows re += w_re[c,f,n] * s[c,m-n]
im += w_im[c,f,n] * s[c,m-n]
» Spectra for each frequency components are result[c,f,m] :=
mapped to columns sqrt(re*re + im*im)
end
* Memory usage: ; end
en

* Basis wavelet too long for shared memory eng

* Wavelet filter bank is generated on the GPU

* Avoiding unnecessary CPU usage and host —
device copy



MULTI-GPU COMMUNICATION SCHEMES

* Main goal: minimise the amount of data
that needs to be sent between GPUs

* CUDA-aware MPI

e Data can be sent directly in between GPU
cards’ DRAM with the same API calls

e Displacement buffer corruption for large
inputs
* Manual collective communication

* Asymmetric distribution scheme

* Whole measurement data is divided into
equal-length segments
* Requires overlap for numerical correctness

* Number of GPU cards is not strictly bound by

the problem size
* Works well for convolution
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MULTI-GPU COMMUNICATION SCHEMES

* Channel based distribution scheme
* Channels are assigned equally to GPUs

* Number of GPUs is bound by the number of
channels

* Less unnecessary data transfers for long
convolution windows

* Feasible option for wavelet transform

» Kernel can be modified for single channel
computation resulting in a more efficient
solution

* For group measurements, data from
multiple subjects can be processed
simultaneously
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Example of a frequency-modulated test signal

MEASUREMENT RESULTS
* Devices used:
* NVIDIA GeForce RTX 3050 — individual kernel
performance measurements 0
e Komondor supercomputer (1 — 16 NVIDIA A100 |
GPU) — multi-GPU runtime measurements
* Test data |
e 64 —128 channels A 0w 4000 10000 1
2 million data points per channel Scalogram of the test signal

* Approximately 15 minutes of 2KHz EEG
measurement data

* 65536 data points (30 seconds) in case of Wavelet
transform

* Randomly generated vector

« MATLAB Signal Processing Toolbox was used
to verify the correctness of the _F-h -
implementations 1 _—
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WAVELET TRANSFORM KERNEL PERFORMANCE

FP32 and FP64 roofline plot for single channel
o RO Ofl I n e m Od eI : Floating Point Operations Roofline

* Performance in relation

. FP32
to arithmetic intensity  § / l
;i o R O FP64
 Wavelet kernel is | /
Com pute bou nd ' Arithmetic Intensity [FLOP/byte]
. FP32 and FP64 fli lot for 1024 ch I
 Performance increases " rootiine plotior ZRSR channes
by adding more
ChannEIS Q - _ l FP32
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WAVELET TRANSFORM SCALABILITY

Total runtime: .

* From the start of distribution

* To the end of collection

Total runtime [ms]
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Wavelet transform
Data length 65536
Number of channels 128

Kernel runtime decreases with more GPUs

The size of the task allows strong scaling

In case of the multi-GPU implementation, computation time is
dominant

Communication time is a near-constant 1 second
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Floating Point Operations Roofline

CONVOLUTION -

* Kernel is on the edge of memory /

boundedness ' 1 L

Arithmetic Intensity [FLOP/byte]

* Performance increases by adding
more channels

Number of channels 128

e Kernel runtime for one GPU e 2 Kevved i | o000
decreases proportionally to the
number of GPU cards b

« Communication time is dominant 3 %

* The algorithm is scalable, it can be & ©= o
used as part of a pipeline
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SUMMARY

e Conclusion:
* Two working DSP algorithms designed for single-GPU use
 Different communication schemes for multi-GPU use
* Both algorithms can be scaled efficiently in supercomputer environments
* MPI is a serious scalability bottleneck for large problem sizes

* Further development:

e Elimination of MPI in favour of direct GPU-GPU communication with NVIDIA
frameworks and distributed file system reading

* Integration to the rest of the EEG preprocessing pipeline
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