
HIGH-PERFORMANCE MULTI-GPU EEG SIGNAL 
PROCESSING

Bálint Tóth
Zoltán Juhász

University of Pannonia, 
Department of Electrical Engineering and Information Systems



AIM OF STUDY & MOTIVATION

• Implementation of EEG preprocessing steps that can be used on pre-
exascale supercomputer architectures

• Selected DSP algorithms:
• Convolution in time domain
• Wavelet transform in time domain

• Main goals:
• High computational performance
• Scalability
• Efficient use of the underlying GPU architecture
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EEG SIGNAL PROCESSING

• Scientific EEG experiments in general
• High temporal resolution (millisecond range)
• High sampling rate: 1-30 kHz
• Many channels (electrodes): 64 - 300
• High amount of data: several GB per 

measurement

• Processing pipeline
• Many complex DSP algorithms in sequence

• Time consuming on common hardware
• Can take several hours for one subject
• For group measurements, processing time 

can reach days

3



RELATED TECHNOLOGIES

• NVIDIA CUDA
• To enable extreme parallel computation
• Hierarchical memory and thread model

• Message Passing Interface (MPI)
• Communication for distributed memory 

systems

• NVIDIA A100 Datacentre GPU
• CUDA Core count: 6912
• SM count: 108
• Shared memory size: 160 KB
• Device memory size: 40GB
• Device memory bandwidth: 1,55 GB/s
• Performance of one GPU: 19,5 TFlop/s

NVIDIA A100 Streaming Multiprocessor
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NVIDIA A100 GPU ARCHITECTURE
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EEG PREPROCESSING 
OPERATIONS

• Filtering
• Convolution
• Fourier transform

• Time-Frequency analysis
• Wavelet transform
• Hilbert transform
• Short Time Fourier transform

• Spectral density estimation
• Fourier transform
• Wavelet transform
• Convolution

EEGLAB preprocessing pipeline
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WAVELET TRANSFORM

• Operation
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• Morlet basis-wavelet: బ
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• In the case of multiple frequencies, the 
basis wavelet needs to be scaled

• Convolution for each frequency of each 
channel:
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• Filterbank structure

Morlet basis wavelet
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BASE ALGORITHM

• Multi-channel signal
• Multiple frequency components

• Increment:  ௙೘ೌೣି௙೘೔೙

ி

• Basis wavelet length depends on the
sampling rate
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for c := 0 to C do
    for f := fmin to F do
        for m := 0 to M+N-1 do
            re := 0.0
            im := 0.0
            for n := 0 to N-1 do
                re += w_re[c,f,n] * s[c,m-n]
                im += w_im[c,f,n] * s[c,m-n]
                result[c,f,m] :=
       sqrt(re*re + im*im)
            end
        end
    end
end

C – number of channels
M – data points in one channel
F – number of frequency components
N – length of the basis wavelet
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• Thread hierarchy:
• 2D input, 3D output 
• 2D Grid with row-major mapping 
• Each element in the result matrix is mapped 

to a thread
• Channels are mapped to rows
• Spectra for each frequency components are 

mapped to columns

• Memory usage:
• Basis wavelet too long for shared memory
• Wavelet filter bank is generated on the GPU

• Avoiding unnecessary CPU usage and host –
device copy

SINGLE-GPU IMPLEMENTATION
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• Main goal: minimise the amount of data 
that needs to be sent between GPUs

• CUDA-aware MPI
• Data can be sent directly in between GPU 

cards’ DRAM with the same API calls
• Displacement buffer corruption for large 

inputs
• Manual collective communication

• Asymmetric distribution scheme
• Whole measurement data is divided into 

equal-length segments
• Requires overlap for numerical correctness
• Number of GPU cards is not strictly bound by 

the problem size
• Works well for convolution

MULTI-GPU COMMUNICATION SCHEMES
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MULTI-GPU COMMUNICATION SCHEMES

• Channel based distribution scheme
• Channels are assigned equally to GPUs
• Number of GPUs is bound by the number of 

channels
• Less unnecessary data transfers for long 

convolution windows

• Feasible option for wavelet transform
• Kernel can be modified for single channel 

computation resulting in a more efficient 
solution

• For group measurements, data from 
multiple subjects can be processed 
simultaneously
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MEASUREMENT RESULTS

• Devices used:
• NVIDIA GeForce RTX 3050 – individual kernel 

performance measurements
• Komondor supercomputer (1 – 16 NVIDIA A100 

GPU) – multi-GPU runtime measurements

• Test data
• 64 – 128 channels
• 2 million data points per channel
• Approximately 15 minutes of 2KHz EEG 

measurement data
• 65536 data points (30 seconds) in case of Wavelet 

transform
• Randomly generated vector

• MATLAB Signal Processing Toolbox was used 
to verify the correctness of the 
implementations

Example of a frequency-modulated test signal

Scalogram of the test signal
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WAVELET TRANSFORM KERNEL PERFORMANCE

• Roofline model:
• Performance in relation 

to arithmetic intensity

• Wavelet kernel is 
compute bound

• Performance increases 
by adding more 
channels

FP32 and FP64 roofline plot for single channel

FP32 and FP64 roofline plot for 1024 channels

FP64

FP64

FP32

FP32
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WAVELET TRANSFORM SCALABILITY

Total runtime:
• From the start of distribution
• To the end of collection

• Kernel runtime decreases with more GPUs
• The size of the task allows strong scaling
• In case of the multi-GPU implementation, computation time is 

dominant
• Communication time is a near-constant 1 second
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CONVOLUTION

• Kernel is on the edge of memory 
boundedness

• Performance increases by adding 
more channels

• Kernel runtime for one GPU 
decreases proportionally to the 
number of GPU cards

• Communication time is dominant
• The algorithm is scalable, it can be 

used as part of a pipeline
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SUMMARY

• Conclusion:
• Two working DSP algorithms designed for single-GPU use
• Different communication schemes for multi-GPU use
• Both algorithms can be scaled efficiently in supercomputer environments
• MPI is a serious scalability bottleneck for large problem sizes

• Further development:
• Elimination of MPI in favour of direct GPU-GPU communication with NVIDIA 

frameworks and distributed file system reading
• Integration to the rest of the EEG preprocessing pipeline
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