HIGH-PERFORMANCE MULTI-GPU EEG SIGNAL
PROCESSING

Balint Toth

Zoltan Juhasz

University of Pannonia,

Department of Electrical Engineering and Information Systems



AIM OF STUDY & MOTIVATION

* Implementation of EEG preprocessing steps that can be used on pre-
exascale supercomputer architectures

 Selected DSP algorithms:
e Convolution in time domain
 Wavelet transform in time domain

* Main goals:
* High computational performance
* Scalability
* Efficient use of the underlying GPU architecture



EEG SIGNAL PROCESSING

* Scientific EEG experiments in general
* High temporal resolution (millisecond range)
* High sampling rate: 1-30 kHz
 Many channels (electrodes): 64 - 300

* High amount of data: several GB per
measurement

* Processing pipeline

* Many complex DSP algorithms in sequence WWWMMWWWWWWMWW

* Time consuming on common hardware
* Can take several hours for one subject
* For group measurements, processing time



RELATED TECHNOLOGIES
* NVIDIA CUDA

* To enable extreme parallel computation
* Hierarchical memory and thread model

* Message Passing Interface (MPI)

 Communication for distributed memory
systems

* NVIDIA A100 Datacentre GPU
* CUDA Core count: 6912
SM count: 108
Shared memory size: 160 KB
Device memory size: 40GB
Device memory bandwidth: 1,55 GB/s
Performance of one GPU: 19,5 TFlop/s

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

FP64

TENSOR CORE

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

TENSOR CORE

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

FP64
FP64

FP64

TENSOR CORE

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

INT32INT32 FP32 FP32

192KB L1 Data Cache / Shared Memory

Tex

Tex

FP64

FP6a

FP64
TENSOR CORE
FP64

NVIDIA A100 Streaming Multiprocessor



NVIDIA A100 GPU ARCHITECTURE

PCI Express 4.0 Host Interface

5 |[erPc GPC GPC GPC =
% TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC TPC e TPC TPC TPC TPC TPC TPC e T™C TPC TPC TPC TPC ™C TPC TPC TPC TPC TPC TPC TPC s
.E SM SM SM SM M SM SM SM SM SM SM SM SM SM 2 SM SM SM SM SM SM SM SM SM SM SM M M SM SM sM SM o
s~ SM e T JETI I =~ M S Su__|sw  |ew  Jsw  lsw | [sm [
o e | | | e | | | —— e || e | E—— E—— | | —— [ | e | || | E—| —— | E— | p—— e | | r— | E—| E—— E——— | ——1 | —— <
= © o =
g 2
E F
@ P e S S SR S S (N Py ST SOy ey Sy YU G S SR e R S e PSS SUPS (NS S R N S DU MNPSOS A S o T e L R P e T S e e S PO T S =
g = HEE
o =
X ® )
s g
[=]
£ 2
5 <
= © o
2 3
2 g
E S
= S
=
=
= 2
O
= °© o =
2 3
2 z
§ <)
~ = -
= = 2 ]
= e
] z
5 -
E 2
5 <
= ° oV
o
= 3
2 g
§ S
= =
8 =
E 3
5 <
= o [2) =
(-]
2 S
2 g
g <)
o~ = X
= = - o
o =
ES 5 HEEE EE A | EE == R e = EE= = == = === H=||= === — == == === 2 o = -
s ‘ 3
E 2
° <
= © o
E’ et | ] | f—t— | f—t—" | l—t—" | —— | —— ——F == =N el |t | |t e | St | | |t (et | s | it | ke | | g
<} M SM SM SM SM SM SM M SM SM SM M SM M SM SM M SM SM SM Sm SM SM =3
g e T™we TPC T™PC T™PCe T™C T™PC ™C T™PCe TPC ™e TPC TPC TPC T™PC TPC e e TPC TPC T™Ce TPC TPC ™C TPC %
o
= ||epPc GPC GPC GPC S

R 2 3 . s 2 . 2 s s . 2

?

™
NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink NVLink | NVLink




EEGLAB preprocessing pipeline EEG PREPROCESSING

. ﬁ PRE-PROCESSING TOOLS OPERATIONS

_‘)LMPORTRAVﬁ e * Filtering

DOWN..S;SWIV‘I'PLRW\TA?%: ‘_ * Co nvol Utio n
U u‘/ ) ‘1.:‘“.;1.... HIGH-PASS FILTER THE DATA o FO u rie r t ra n Sfo rm
T D™

0/@% ‘ DETECT AND REJECT BAD CHANNELS * Ti m e- F req u e n cy a na IySiS

RPREFEREHGE ",- - * Wavelet transform
(" * Hilbert transform

EXTRACT DATA EPOCH = mm
* Short Time Fourier transform
REJECT NOISY DATA
t S"Z ‘ PERFORM ICADECOMPOSITION ¢ SPECtraI denSity eStimation

* Fourier transform

"D.; Jo
* Wavelet transform

FIT EQUIVALENT CURRENT DIPOLES
"‘ (D (- (@ * Convolution

SELECT ICA COMPONENTS
PO
L |
o

SAVE THE DATA




WAVELET TRANSFORM

* Operation

oo

t—1
Wi{s(®)}T,7) = Js(t)‘P(T) dt

o | .
* Morlet basis-wavelet: P(t) = e/%ofe 2

* |n the case of multiple frequencies, the
basis wavelet needs to be scaled

* Convolution for each frequency of each
channel:

N-1
Sm] = Z we[n] - s[m — n]
n=0

e Filterbank structure

‘| “[ || /(\ |

." II Ii || I| " '.I |||'|
_mﬁ%%"\x l Ill' ||l| _I|| I ||| |]'| n'll ! \ [
Y i

Morlet basis wavelet



BASE ALGORITHM

* Multi-channel signal

: for ¢ := 0 to C do
* Multiple frequency components e
e Increment: [max—fmin for m := @ to M#N-1 do
F re := 0.0
* Basis wavelet length depends on the im := 0.0
. for n := 0 to N-1 do
Sampllng rate re += w_re[c,f,n] * s[c,m-n]
im += w_im[c,f,n] * s[c,m-n]
result[c,f,m] :=
O(C F (M + N 1)) sgrt(re*re + im*im)
B o end
d
C — number of channels end =
M — data points in one channel end

F — number of frequency components
N — length of the basis wavelet



SINGLE-GPU IMPLEMENTATION

* Thread hierarchy:

e 2D input, 3D output for ¢ := @ to C do
. . . . for £ := fmin to F do
e 2D Grid with row-major mapping for m ie ® to MN-1 do
* Each element in the result matrix is mapped re := g-g
im := .
to a thread for n := @ to N-1 do
* Channels are mapped to rows re += w_re[c,f,n] * s[c,m-n]
im += w_im[c,f,n] * s[c,m-n]
» Spectra for each frequency components are result[c,f,m] :=
mapped to columns sqrt(re*re + im*im)
end
* Memory usage: ; end
en

* Basis wavelet too long for shared memory eng

* Wavelet filter bank is generated on the GPU

* Avoiding unnecessary CPU usage and host —
device copy



MULTI-GPU COMMUNICATION SCHEMES

* Main goal: minimise the amount of data
that needs to be sent between GPUs

* CUDA-aware MPI

e Data can be sent directly in between GPU
cards’ DRAM with the same API calls

e Displacement buffer corruption for large
inputs
* Manual collective communication

* Asymmetric distribution scheme

* Whole measurement data is divided into
equal-length segments
* Requires overlap for numerical correctness

* Number of GPU cards is not strictly bound by

the problem size
* Works well for convolution

Segmenté
1 .

Segment?
2

Segmenté
3

Segment
4

" Overlap

" Overlap

Overlap

GPU 1

GPU 2

GPU 3

GPU 4

10

Channel
1

Channel
2



MULTI-GPU COMMUNICATION SCHEMES

* Channel based distribution scheme
* Channels are assigned equally to GPUs

* Number of GPUs is bound by the number of
channels

* Less unnecessary data transfers for long
convolution windows

* Feasible option for wavelet transform

» Kernel can be modified for single channel
computation resulting in a more efficient
solution

* For group measurements, data from
multiple subjects can be processed
simultaneously

Channel 1

Channel 2

Channel 3

Channel 4

11

GPU 1

GPU 2

GPU 3

GPU 4




Example of a frequency-modulated test signal

MEASUREMENT RESULTS
* Devices used:
* NVIDIA GeForce RTX 3050 — individual kernel
performance measurements 0
e Komondor supercomputer (1 — 16 NVIDIA A100 |
GPU) — multi-GPU runtime measurements
* Test data |
e 64 —128 channels A 0w 4000 10000 1
2 million data points per channel Scalogram of the test signal

* Approximately 15 minutes of 2KHz EEG
measurement data

* 65536 data points (30 seconds) in case of Wavelet
transform

* Randomly generated vector

« MATLAB Signal Processing Toolbox was used
to verify the correctness of the _F-h -
implementations 1 _—

12



WAVELET TRANSFORM KERNEL PERFORMANCE

FP32 and FP64 roofline plot for single channel
o RO Ofl I n e m Od eI : Floating Point Operations Roofline

* Performance in relation

. FP32
to arithmetic intensity  § / l
;i o R O FP64
 Wavelet kernel is | /
Com pute bou nd ' Arithmetic Intensity [FLOP/byte]
. FP32 and FP64 fli lot for 1024 ch I
 Performance increases " rootiine plotior ZRSR channes
by adding more
ChannEIS Q - _ l FP32
é; 01 /. FP64

Arithmetic Intensity [FLOP/byte]

13

1E+06



WAVELET TRANSFORM SCALABILITY

Total runtime: .

* From the start of distribution

* To the end of collection

Total runtime [ms]

7000.00
6000.00

5000.00

4000.00

3000.00

2000.00

1000.00 A

900.00
800.00
700.00

600.00
500.00

400.00

Wavelet transform
Data length 65536
Number of channels 128

Kernel runtime decreases with more GPUs

The size of the task allows strong scaling

In case of the multi-GPU implementation, computation time is
dominant

Communication time is a near-constant 1 second

-=-=- 100% efficiency
—+— Time achieved

-=-=- 100% efficiency -+ 7000.00
—— Time achieved 6000.00

5000.00

4000.00

3000.00

2000.00

Kernel runtime [ms]

- 1000.00
900.00
800.00

700.00
600.00

500.00

400.00

4 8 16 1
Number of GPUs

Number of GPUs 1 4



Floating Point Operations Roofline

CONVOLUTION -

* Kernel is on the edge of memory /

boundedness ' 1 L

Arithmetic Intensity [FLOP/byte]

* Performance increases by adding
more channels

Number of channels 128

e Kernel runtime for one GPU e 2 Kevved i | o000
decreases proportionally to the
number of GPU cards b

« Communication time is dominant 3 %

* The algorithm is scalable, it can be & ©= o
used as part of a pipeline

15

Kernel runtime [ms]



SUMMARY

e Conclusion:
* Two working DSP algorithms designed for single-GPU use
 Different communication schemes for multi-GPU use
* Both algorithms can be scaled efficiently in supercomputer environments
* MPI is a serious scalability bottleneck for large problem sizes

* Further development:

e Elimination of MPI in favour of direct GPU-GPU communication with NVIDIA
frameworks and distributed file system reading

* Integration to the rest of the EEG preprocessing pipeline

16



