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Hadron therapy
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Hadron(proton) 
therapy

• Cancer therapy

• Using radiation

• Utilize the Bragg peak of proton

• Ambulant treatment
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Challanges for Hadron 
therapy

• Traditional tomography was not made 
for protons

• Hadron therapy needs map of 
stopping power

• Data processing needs to be fast for 
ambulant treatment
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Proton Computed 
Tomography
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Proton computed tomography(PCT)

• High energy (200 MeV) protons beamed 
through a phantom

• These are scattered on the particles of the 
phantom

• The detector measures position of the hits 
and energy deposition (by the clusters of 
the hits)

• Detector layers are ALICE ALPIDE chips

• 9216 pixel in X axis, 6144 pixel in Y axis 7



Proton computed tomography(PCT)

• The detector signals processed

• Reconstruct the trajectories based on the 
position and energy deposit of the hits

• Extract initial angles and kinetic energy

• Rotate and translate the system around the 
phantom

• Get a 3D map
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Data processing with machine learning

• To predict angle we need to 
reconstruct the trajectories

• For the image reconstruction:
• Scattering angles

• Initial kinetic energy

• Reconstructing particle path with
traditional algorithms takes too 
much computational time

• Deep Neural Networks can 
evaluate fast

• Learn complex connections 
between data
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Data structure

• Using data simulated from openGate(Geant4 
medical extension)
• Therefore tracking information is available

• Large number (O(1e5)) of events may be generated

• Measurment is done in frames with 100-200 
primaries (event)

• For every detector layer:
•  middle of every hit (X,Y coordinate) 

•  size (energy deposition)
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Matching
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Sinkhorn algorithm
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• We want to connect elements of 𝑋 with 
elements of 𝑌

• The Sinkhorn operator:

• T is a constant parameter, often called 
temperature

𝑆 𝑋, 𝑌 𝑖,𝑗 = 𝑒

− (𝑋𝑖−𝑌𝑗)2

𝑇



Normalize the operator
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• 𝑆 𝑋, 𝑌 𝑖,𝑗  operator gives us transformed 
distances

• We need to convert this to probability

• 𝑃 𝑋, 𝑌 𝑖 =  σ𝑗 𝑆 𝑋, 𝑌 𝑖,𝑗 ≅ 1

• After normalizing the rows the sum of 
columns will not be 1



Normalize the operator
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• 𝑆 𝑋, 𝑌 𝑖,𝑗  operator gives us transformed 
distances

• We need to convert this to probability

• 𝑃 𝑋, 𝑌 𝑖 =  σ𝑗 𝑆 𝑋, 𝑌 𝑖,𝑗 ≅ 1

• After normalizing the rows the sum of 
columns will not be 1

3.813014 1.1846079 1.1926202

9.104467 4.32391 5.296152 

4.1251545 5.4451103 7.04003



Normalize the operator

15

• 𝑆 𝑋, 𝑌 𝑖,𝑗  operator gives us transformed 
distances

• We need to convert this to probability

• 𝑃 𝑋, 𝑌 𝑖 =  σ𝑗 𝑆 𝑋, 𝑌 𝑖,𝑗 ≅ 1

• After normalizing the rows the sum of 
columns will not be 1

3.813014 1.1846079 1.1926202

9.104467 4.32391 5.296152 

4.1251545 5.4451103 7.04003

0.8733873 0.06305282 0.06356005

0.9703301 0.00814235 0.02152728

0.04312247 0.16141844 0.79545933



Normalize the operator
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• 𝑆 𝑋, 𝑌 𝑖,𝑗  operator gives us transformed 
distances

• We need to convert this to probability

• 𝑃 𝑋, 𝑌 𝑖 =  σ𝑗 𝑆 𝑋, 𝑌 𝑖,𝑗 ≅ 1

• After normalizing the rows the sum of 
columns will not be 1

• Repeat iterations until the sum of rows is 1 
and the sum of columns is 1 also

0.2894971 0.5115175 0.19898538

0.70675534 0.14515041 0.14809425

0.00374754 0.34333208 0.6529203

0.8733873 0.06305282 0.06356005

0.9703301 0.00814235 0.02152728

0.04312247 0.16141844 0.79545933



Sinkhor algorithm with deep 
learning
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𝑋𝐿
𝑝

= ℎ 𝑋𝐿−1, 𝑋𝐿−2

• Project points on the detector layer:

• Connect the projected points with the true 
points

𝑆 𝑋𝐿
𝑝

, 𝑋𝐿
𝑡

𝑖,𝑗
= 𝑒

− (𝑋𝐿,𝑖
𝑃 −𝑋𝐿,𝑗

𝑡 )2

𝑇



Data flow

• Connecting points in between detector layers

• Between calorimetric layers only Sinkhorn 
matching is enough

• For the tracking layers we use previous 
momentum of reconstructed track

Layer N Layer N-1 … Layer 3 Layer 2 Layer 1
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Tracking 
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Results
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Results
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• Accuracy is very high in the 
calorimetric layers

• When most of the particles 
stop the accuracy go down 
significantly

• Drops at the end can be 
handled easily



Results
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• Accuracy has some 
decrease in it

• Mean of O(1e4) number of 
events 

• Around layer 23 all the 
particles are stopped

• This is why results are not 
decrease from there



Results
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• Large number of events for 
testing O(1e4)

• Maximum time for track 
reconstruction: 2-6 ms

• One particle track 
reconstruction time: 0.8 ms



Summary & outlook
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Supporters:

• Hungarian Artificial Intelligence Laboratory, under the ID: RFF-2.3.1-21-2022-00004

• OTKA K135515

• SUPPORTED BY THE DKOP-23 DOCTORAL EXCELLENCE PROGRAM OF THE MINISTRY FOR CULTURE 
AND INNOVATIONFROM THE SOURCE OF THE NATIONAL RESEARCH, DEVELOPMENT AND 
INNOVATION FUND.

• Wigner Scientific Computer Laboratory

• Writing a publication
• Integrate into the Bergen pCT 

collaboration

The application of deep learning algorithms in 
the pCT track reconstruction yields good results.
The Bergen pCT machine learning approach 
gives better results, but took significantly more 
time to reconstruct trajectories.



Thank you for your 
attention
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Resources

• https://www.uwa.edu.au/study/courses/master-of-surgery 

• https://www.timesofisrael.com/major-israeli-hospital-admits-giving-cancer-patients-expired-
chemotherapy-drugs/ 

• https://www.saferradiationtherapy.com/radiation-therapy-2/

• https://builtin.com/artificial-intelligence/transformer-neural-network

• https://study.com/academy/lesson/bipartite-graph-definition-applications-examples.html

•   Johan Alme et all, A High-Granularity Digital Tracking Calorimeter Optimized for Proton CT, 
Frontiers in Physics (2020), doi: 10.3389/fphy.2020.568243

•  Robert P Johnson, Review of medical radiography and tomography with proton beams, Rep. Prog. 
Phys. (81) (2018) 016701, doi: 10.1088/1361-6633/aa8b1d.

• M. Mager et all, ALPIDE, the Monolithic Active Pixel Sensor for the ALICE ITS upgrade, Elsevier 434-
438 (2016), doi 10.1016/j.nima.2015.09.057

• H.E.S. Pettersen et all, Design optimization of pixel-based range telescope for proton computed 
tomography, Physica Medica 87-97 (2019) doi:https://doi.org/10.1016/j.ejmp.2019.05.026 25
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