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Generative modeling

* Learn a representation of some probability distribution in order
to generate realistic samples.

Train Model(6) —

Generated with DeepAl image generator
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Type of Algorithm

classical quantum
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2016.01 QBM 2018.02 QVAE 2020.06 Variational QBM — 3
The QBM proposed by Amin et al. is a | The QVAE introduced by Khoshaman A variant of QBM is proposed by o
probabilistic model based on Boltzmann | et al. adopts a classical VAE structure Zoufal et al., where the VarQITE S
distribution, where the training problem is | and a quantum prior distribution in the method was implemented on PQCs E\,
circumvented via a quantum upper bound. | latent space realized by a QBM model. to facilitate exact gradient updates.

¥'S r - + > o
2018.01 QCBM 2018.04 QGAN Source: Wikipedia
The QCBM proposed by Benedetti et al. The concept of QGAN was proposed by Lloyd and
leverages the Born rule and is naturally Weedbrook. The potential merits of QGANs when the
implemented on quantum circuits generator or the discriminator (or both) is
executed on NISQ devices. implemented on quantum computers are discussed. Source: J. Tian, et al., IEEE Transactions on Pattern

Analysis and Machine Intelligence, Oct. 2023.

(Quantum Circuit Born Machine

- O
* Paradigmatic quantum generative model @ T _—

\ * Inherits the Born rule J Data Target Model
distribution distribution
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Quantum Circuit Born Machines

General task: @ Initialize circuit with random parameters @ = (91, e ,GL)
4 A 4 N\ ) 4 N\ ( h
* Learn arepresentation of the (target) probability 0)— | lé
distribution over binary random variables. 07— . > l NEE:
RN . AV CRIRIICR U6 uer) |z
* Access to explicit distribution (not realistic) OR p
a limited number of samples. 10)— RO
QCBM taSk: \ J \ J — / — T

J @Update 0. Repeat 2 through 4 until convergence
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@ Estimate mismatch between data and quantum outcomes
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Output state

Learn a quantum state via optimizing the
parameters of a variational quantum circuit Reference data to be learned
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Source: M. Benedetti, etal., npj Ql, vol. 5, no. 1, p. 45, 2019.



General-purpose QCBMs

Task: learn P(A,B,C,D) - joint probability distribution of correlated (binary) random variables

/ No problem-specific knowledge \
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General-purpose Ansatz
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General-purpose QCBMs

Task: learn P(A,B,C,D) - joint probability distribution of correlated (binary) random variables

/ No problem-specific knowledge w

* Trainability issues
(e.g., barren plateaus)

* Poor average performance
(no-free-lunch theorem)
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o

\ General-purpose Ansatz J
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General-purpose QCBMs

Task: learn P(A,B,C,D) - joint probability distribution of correlated (binary) random variables

/ * Trainability issues
No problem-specific knowledge (e.g., barren plateaus)

* Poor average performance
(no-free-lunch theorem)

M e Il
p{ H—H—T} NO “one model to
General-purpose AnsatzJ rule them all!”
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General-purpose QCBMs

Task: learn P(A,B,C,D) - joint probability distribution of correlated (binary) random variables

/ * Trainability issues
No problem-specific knowledge

(e.g., barren plateaus)
* Poor average performance
(no-free-lunch theorem)

Insufficient inductive bias!
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p— H — l
General-purpose Ansatz
\ J How to incorporate problem-specific
knowledge?
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General-purpose vs Problem-informed

Task: learn P(A,B,C,D) - joint probability distribution of correlated (binary) random variables

/ No problem-specific knowledge w
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\ General-purpose Ansatz J

(A)
e‘e s+ H HH _D

Independencies: (A1 D|C) (B 1LD| &

& = :

\ Problem-informed Ansatz/

Use Probabilistic Graphical Models (PGMs)
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Problem-informed Generative QML Framework

/ Generative learning Structure represented Inductive bias in \

problem as PGMs quantum circuit model

Natural o / :
Processing S work Mark —_—
ensor networks arkov
network .

5 o o

L H = H~]

\ Computer vision Mixed model /
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Probabilistic Graphical Models

Graph Independencies Factorization
A (BLC|A)

/@ (DL A|B,C) P(A,B,C, D, E) = P(A)P(B|A)P(C|A)
@ @ (E1C.D|B) P(D|B,C)P(E|B)
Bayesian networks

Za
(BLD|C)

®)

Markov networks
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01 (A, B,C)

0 bO 0 30
Markov Networks (MN) i
a® v 5

0 1 1
Cligue1 =———— Zl ZO 20 115
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G‘G Maximal clique ‘ ' al bt b 10

factorization - e ‘ o

Q Q 0¢2(C(;7D>
Clique 2 . 20 Elll 110

0.25 A Cl dO 1
ctdl 15
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Probability
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P(A,B,C, D) = %¢1(A7370)¢2(07 D)

We use this framework for benchmark construction.

Assignment
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Quantum Circuit Markov Random Field (QCMRF)

Higher-order Ising Hamiltonian
Duplicate terms and identities discarded

> HB) =Y Qbel+2,) > H(a) > Ugla)=e

CceC vel

:xl

0) UF(T1, Ag, 51)

0) U3(T5, Az, %)

Quantum Circuit Ising Born Machine (QCIBM) 0) U.(a) | 035, A5, 55)
* Similar, but problem-agnostic Ansatz
* Only 2-local interactions

* All-to-all connectivity 10) L UP (T, Any S0)

B. Coyle, et al., npj Ql, vol. 6, no. 1, p. 60, 2020.
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QCMRF example

. Clique 1
Clique 1 S L \
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* MNs can represent ANY probability distribution!

* When is this representation useful (for our model)?
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1. When does it outperform problem-agnostic?

Total variational distance

- (QCMRF KL == QCMRF MMD QCIBM KL QCIBM MMD
0.8 0.8 0.8
. . Performance
0.4 0.4 - —
decreases!
0.2 0.2 <
\ - . Can capture
R e « higher-order
0.1 - 0.1 i
l l l l l l correlations!
0 200 400 0 200 400
Epoch Epoch
Problem complexity
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2. What problems should we consider?

1072 - I Complete graph
1 E~o_ I -+- Random graph
10-3 i A~ - T Triangle chain

~
I~

Complete graph with 3
maximal clique factorization

l 10_7_%
10_8-§

0 (2") degrees of freedom

2 3 4 5 6 7 8
l # qubits

. . ? . . . .
Can this be trainable Exponential decay — deterministic barren plateaus
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2. Efficient MN representation

10_2_%:[ Complete graph b tt
(£ E- Rendom greph poly(n) parameters _, Pelter
10_3_E \\\\\ riangle chain . . . oyq e
| | (still classically hard) ~ trainability
P~ 1074 4 ~~"\“~:|7 _____ T
S T
T, 1072 5
g
S e 4
10-7—:
10°¢ § Efficient MN representation

2 3,/ 4 5 6 7 8
# qubits

Exponential decay — deterministic barren plateaus

30/05/2024 Problem-informed Graphical Quantum Generative Learning 18



3. Basis-enhanced Bayesian Quantum Circuit

Bayesian Network

k-gram :
BQC Basis er?hancement
e . ¥
S lwr) ? @ Vi A Z1
é i  Canrepresent exactly the
L yn) U, & %, 4 Vo HAA| T2 - . . .
; ‘ g probability distribution
VT lws) “J‘ U; —o—o0—@ Vs A 3 induced by the BN!
T : '
L) — Uy —@—@—H Vi HA| 24 :
; ‘3 ; * Basis-enhancement makes
lys) — Us |—o—H v 4] =5 BBQC more expressive than
a_ ) the corresponding BN!
|W6> ‘ ) Usg _“ Ve 1A Ts
Targfet unit Control unit

X. Gao, et al. PRX, vol. 12, no. 2, p. 021037, 2022.
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3. Learning MNs with BBQCs

* MN graph has to be triangulated first > computationally intensive task!
* BBQCs also require significantly more quantum resources (than QCMRFs)!

Markov network Bayesian network

Triangulation
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3. QCMRF vs BBQC

Total variational distance

{ —%¥— QCMRF
1 —e— BBQC

S 102 A
o
O
A
Similar performance at much lower costs! ' Vasaanaaas
101 T T T T T T T T
4 6 8 10 12 14 16 18
—— QCMRFKL == QCMRFMMD —— BBQCKL =—~- BBQC MMD # qubits
0.8 - 0.8 0.8 -
0.4 - 0.4 - 0.4 -
0.2 - 0.2 1 024 W=
M R e
\\--s-" — *“"'—~—~_._’__~___._
0.1 - 0.1 — ::'_""""\::_: 0.1 -
0.05 - 0.05 - 0.05 -
T T T T T T
0 200 400 0 200 400
Epoch Epoch
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4. Potential for Quantum Advantage?

/ Sampling MNs is hard in general!
PGM

1. Quantum learning advantage in A
* Accuracy
* Learning speed "
* Sample complexity /

— Our work

Sampling QAOA circuits is hard!

Farhi, Harrow. arXiv:1602.07674, 2019.
2. Quantum advantage in sampling the unknown target distribution: Krovi. arXiv:2206.05642, 2022.
* Target distribution is learnable (up to given error) by both a
classical and a quantum model
 Sampling the trained quantum circuit is more efficient
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Most promising problems

/ To outperform problem-agnostic
. Higher-order correlations

/ Better trainability
Polynomial number of parameters

. Hard to convert to BNs —
. Hard to sample classically\

— More cost-effective

Potential for Q advantage
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