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Language

Natural language. . .

▶ is a symbolic sequence.
▶ is context-aware.
▶ could be ambiguous.
▶ follows a given structure and conveys meaning.
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Meanings as Mental Images

Perception of the language creates a mental image similar to
percieving or recalling the object (Deacon 1997).
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Meanings as Associative Mappings

Language is a learned by internalizing distributed probabilistic
connections of word-word and word-object structures (Deacon
1997; Skinner 1957). 6 / 54
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Innate Universal Grammar

By learning a language we learn the language’s connection to
the innate Universal Grammar over which we perform inference.
(Deacon 1997; Cook and Newson 2014). 7 / 54
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Innate Mental Language

Learning a language is a translation task from and to an inner
mental language (Deacon 1997; Pinker 2003).
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The AI Perspective
▶ Associative mappings are the closest to how LLMs

are trained.
▶ Transformer circuits try to discover the “mental

images” of trained models.
▶ Ongoing research is eager to incorporate exact “as

Universal as possible” grammars into LLMs.
▶ Translation to and from an LLM’s “mental”

language is the hottest solution for modality
extensions.
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LLMs: The Backbone
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Characteristics of LLMs

▶ Context-awareness: Attention mechanism, or
similar techniques. Few-shot learning possible.

▶ Self-supervised learning: Using vast amounts of
“unlabeled” data.

▶ Autoregressive generation: Modeling continuation
probabilities over a sequence of symbols (tokens).

▶ Large-scale: 1 − 2000B parameters.
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The Role of Dynamic Selection
Attention learns a dynamic (based on x∗) selection
mechanism that is used to process each element of
the input sequence x. The dynamic selection works by
calculating a vector dim. scaled dot-product relevance
score between the input and the query after learnable
linear projections (K, Q, V) (Vaswani et al. 2017).

s(xi , x∗) = K(xi) · Q(x∗)√
d

softmax(⟨s(x1, x∗), . . . , s(xn, x∗)⟩) · V(⟨x1, . . . , xn)⟩
12 / 54
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Self-supervision
The distributional semantic approach (Lenci and
Sahlgren 2023) assumes:

▶ Words that occur in similar contexts are
semantically similar.

▶ The meaning of a word could be inferred from the
context it appears in.

This context could be bidirectional (fill-mask style) or
causal (autoregressive, predict the next style).
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The Language Recipe
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Specifics of a GPT-like Model
▶ Using Causal Multi-Head

Attention to mix tokens.
▶ Feed-forward layers used to mix

channels.
▶ Subword tokenization with

Byte-Pair Encoding.
▶ Autoregressive with k-th order

Markov assumption.
▶ Radford et al. (2019)

p(x1, ..., xn) =
n∏

i=1
p(xi |xi−k , ..., xi−1)
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Alternatives
Selective (input-dependent B, C and ∆) State-Space
Models (Gu and Dao 2023)

Figure 1: S4 block with SRAM state caching.
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Alternatives
Retention with preset decay to construct dual-form
(parallel, serial) networks (Sun et al. 2023).

Figure 2: Retention for training (left) and inference (right).
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How DL Research Benefits from
LLMs?
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How to Handle a Giant?

Figure 3: From Jones, Goldstone, and Python (1979)
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Preference Alignment
Alternatives are not learned due to:

▶ Data Sparsity (training on all 100K words long
sequences is impossible).

▶ Teacher Forcing (the model is not incentivized to
explore alternatives).

But we can do it in a second phase using
sequence-level preference training based on a small
dataset of human preference data. This instruction
fine-tuning produced ChatGPT as well.
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Instruction Fine-tuning
PPO-based RL with (reward, reference and policy LLM
models) was the first breakthrough in human
preference alignment (Ouyang et al. 2022).

maxπθ
Ex∼D,y∼πθ(y |x) [rϕ(x , y)] −

βDKL [πθ(y | x) ∥ πref(y | x)]

Later Direct Preference Optimization (DPO) was
introduced that uses maximum likelihood-based
training without a reward model (Rafailov et al. 2023).

maxπθ
E(x ,yw ,yl )∼D

[
log σ

(
β log πθ(yw |x)

πref(yw |x) − β log πθ(yl |x)
πref(yl |x)

)]
21 / 54
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Instruction Fine-tuning

Lately, even the reference model could be omitted by
using Odds Ratio Preference Optimization (ORPO)
(Hong, Lee, and Thorne 2024).

oddsθ(y | x) = 1−πθ(y |x)
πθ(y |x)

maxπθ
E(x ,yw ,yl )∼D log σ

(
log

(oddsθ(yw |x)
oddsθ(yl |x)

))
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Instruction Fine-tuning

Figure 4: PPO, DPO and ORPO compared in terms of the
model versions used during the steps of alignment tuning
(Hong, Lee, and Thorne 2024)

23 / 54



Large World
Models:

Takeaways &
Review

Natabara
Máté

Gyöngyössy

How to model
the world?

Language, but
Grounded

LLMs: The
Backbone

How DL
Research
Benefits from
LLMs?

World Models
and the
Future

References

Flash Attention
The HBM GPU memory’s access is slow, use the
SRAM cache instead (Dao et al. 2022)!

▶ Iterative processing of the QK product
▶ Parallelized softmax calculation
▶ Recompute intermediate values during backward

pass
▶ In Flash Attention 2 (Dao 2023) GPU process

scheduling is also optimized.

torch.backends.cuda.enable_flash_sdp()
24 / 54
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Flash Attention

Figure 5: Hierarchy of GPU memory and the benefits of an
iterative fused kernel to reduce HBM access. From (Dao et al.
2022)

25 / 54



Large World
Models:

Takeaways &
Review

Natabara
Máté

Gyöngyössy

How to model
the world?

Language, but
Grounded

LLMs: The
Backbone

How DL
Research
Benefits from
LLMs?

World Models
and the
Future

References

Adapters
▶ Full fine-tuning of a

GPT-3.5 level model
needs 520 GB of
memory@fp16.

▶ Tuning the top layers
is inefficient.

▶ Adapter methods add
small trainable
parameter sets to all
layers of the model.

Figure 6: Parallel (mergable)
low-rank adaptation (LoRA)
method. LoRA’s are portable.
(Hu et al. 2022)
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Ensembling
By combining models on the module level, ensembles,
such as Mixtures of Experts (MoE) enable large, sparse
models with data-specific experts (Z. Chen et al. 2022;
Fedus, Zoph, and Shazeer 2022).
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Ensembling

Figure 7: Switch Transformer from Fedus, Zoph, and Shazeer
(2022)
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Speculative Decoding

▶ Autoregressive predictions are guided by a smaller
model (or medusa heads) (Xia et al. 2023;
Leviathan, Kalman, and Matias 2023; C. Chen et
al. 2023; Joao Gante 2023; Cai et al. 2024).

▶ Validation is done by the original model.
▶ 2-8x speedup with effectively no loss in quality.
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Speculative Decoding

Figure 8: Medusa head k predicts the 1 + k-th token.
Candidates are validated by the main LLM head in the next pass
while generating the new candidates as well. (Cai et al. 2024) 30 / 54
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In-context Learning

▶ Context information is used to adapt the model’s
behavior on the fly enabling zero-shot and
few-shot learning.

▶ This opens up the possibility of input-tuning and
answer-engineering (as a ML task).

▶ The context could be accessed from an external
data source as well.

▶ Reasoning and planning (agents) are also possible.
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Agent-loops

Figure 9: A ReAct-style agent observes the current state,
reasons about it, generates a candidate action and reflectively
improves it before execution (Yao et al. 2023). 32 / 54



Large World
Models:

Takeaways &
Review

Natabara
Máté

Gyöngyössy

How to model
the world?

Language, but
Grounded

LLMs: The
Backbone

How DL
Research
Benefits from
LLMs?

World Models
and the
Future

References

World Models and the Future
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Modality Extension
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Emerging Modality Connections
Aligning modality pairs
Mi and Mj along a
spanning tree of all
modalities we get weakly
aligned modalities for each
Mi and Mk ̸=j as well.
Language is a good
candidate for a modality
that can form pairs with
most other modalities.

Figure 10: Modality pairs with
training data (solid) and
without training data (dotted)
from (Girdhar et al. 2023)
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Language as a Transporter of Meaning

Figure 11: ImageBind retrievals of non-trivial modality pairs
(with object detection in the visual modality) (Girdhar et al.
2023)
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The Large World Model Template
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LLava = LLama + Vision
▶ LLaVa uses an LLM + a CLIP-like vision encoder.
▶ It prepends a single image prefix to the text input

and generates text.
▶ GPT-4V used a similar approach early 2023.

Figure 12: LLaVA architecture from Haotian Liu et al. (2023).
38 / 54
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Interleaved Input & Proper Decoding

Figure 13: By applying the corresponding encoders and
decoders Tang et al. (2023) train an any-to-any model. 39 / 54
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LWMs in Action
LWMs are capable of summarizing lectures,
generating toned audio responses, performing
speech recognition at SOTA levels.

OpenAI (OpenAI 2024) and Google (Team et al. 2023)
each provide LWM services for development beating
single-modality models in many tasks. Input and
output streaming is also possible to reduce latency
(taking timing information into account).
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LWMs in Action

Figure 14: Video-based Q&A by Hao Liu et al. (2024)
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LWMs in Action

Figure 15: Multimodal generation based on interleaved input
sequences by Tang et al. (2023)
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And many more. . .

▶ Robot control (Collaboration et al. 2024)
▶ Action spaces & environment modeling (Bruce et

al. 2024)
▶ Modelling priors for image generation (Ramesh et

al. 2022)
▶ Time Series (Das et al. 2024)
▶ Motion (Jiang et al. 2023)
▶ 2D-to-3D object generation (Xu et al. 2024)
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What we lack

▶ Stronger Reasoning (avoiding hallucinations)
▶ Continual Learning (personalization, adaptation)
▶ Symbolic Logical Inference (e.g. for theorem

proving)
▶ Massively Multimodal Models (for dozens of

modalities)

Strong AI?
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Thank you for your attention!
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