
Parallel image reductions
over polygon masks

Dániel Berényi

Freelancer

GPU Day 2024

Motivation

Quality control / selection in manufacturing

Metal Inspection for Surface defect Detection by Image
Thresholding D. M. Lohade, P. B. Chopade

Leather defectWood defects

https://www.semanticscholar.org/author/D.-M.-Lohade/2081980827
https://www.semanticscholar.org/author/P.-B.-Chopade/48712330

Motivation

Quality control / selection in manufacturing

Many goods are produced in wide rolls,
sheets, boards, or on conveyor belts
~1-2 meters wide

Desired fault detection size can be as low as
1.0mm - 0.5mm

Spatial resolution of up to 10k pixels may be needed

https://commons.wikimedia.org/wiki/File:Tissue_Paper_Production_Machine.jpg

https://commons.wikimedia.org/wiki/File:Tissue_Paper_Production_Machine.jpg

Motivation

Quality control / selection in manufacturing

Movement speed is high, the entire decision making has ~1-10
seconds to decide an accept/reject

A complex image processing pipeline should finish in this short
time

Object
arrives in
camera

view

Image
acquisition

Data
trans

fer
Compose Preprocess CV / ML

algs
Decision
making

Object
leaves

camera
view

Physical
actuation

Motivation - polygons

Many applications across industries are
working with polygon boundaries, e.g.:

• PCB QC
• Wood QC
• Mining / ore processing
• Civil engineering
• Cartography
• …

https://medium.com/@nazlicanto/pcb-defect-detection-with-segformer-b56947732914

https://medium.com/@nazlicanto/pcb-defect-detection-with-segformer-b56947732914

Reductions

As with many other image processing tasks,
it is all about reductions:

Input image(s):

~ tens-hundreds
of MPixels

(multiple channels)

Yes/No
decision

Sums, averages, mins, maxs

Histograms, percentiles, medians

Correlation functions
Distribution functions

Masked reductions

As with many other image processing tasks,
it is all about reductions,

But in many cases, we would like to
restrict the area of reductions to some
specific region.

Typical masks include:
Pixelwise masks, rectangles, or polygons…

Sums, averages, mins, maxs

Histograms, percentiles, medians

Correlation functions
Distribution functions

Polygons

Polygons might come from many different sources, we may, or may
not make particular assumptions about them.

For the current task, lets assume that we are dealing with
simple polygons (no self-intersection, no holes, but can be concave):

Polygons

Polygons might come from many different sources, we may, or may
not make particular assumptions about them.

Let’s assume that they are represented as an array of coordinate
pairs:

11.73125, -15.8507
12.015, -15.56944
12.51271, -13.42438
12.97, -12.78444

Point in polygon problem

The solution to the masked reduction problem needs to load and
aggregate those, and preferably only those pixels that are inside the
polygon area.

This is known as the point in polygon problem

There are two widely used algorithms based on:
• Ray casting
• Winding number

Discussion based on:
http://profs.ic.uff.br/~anselmo/cursos/CGI/slidesNovos/Inclusion%20of%20a%20Point%20in%20a%20Polygon.pdf

https://en.wikipedia.org/wiki/Point_in_polygon
http://profs.ic.uff.br/~anselmo/cursos/CGI/slidesNovos/Inclusion%20of%20a%20Point%20in%20a%20Polygon.pdf

Point in polygon problem

Ray casting:
• Count the number of intersection points

with the boundary, if it is odd, the source of the ray is inside

Winding number:
• Sum up the subtended (signed!) angles of the edges

If it is non-zero, point is inside

1 2 3 4 5

1 2

∑𝜃𝑖 = 0
∑𝜃𝑖 = 2𝜋

Point in polygon problem

Caveats:
Ray casting:
• Intersection computation is prone to many corner cases

(like what happens at intersections exactly at the vertices)

Winding number:
• Less corner case processing is needed

1 2 3 4 5

1 2

The winding number algorithm

Any closed curve 𝐶 is homeomorphic to the unit circle, so we can
use a polar coordinate description to define the winding number:

wn 𝐶 =
1

2𝜋
ර
𝐶

𝑑𝜃 =
1

2𝜋
න

0

1

𝜃 𝑢 d𝑢

u

𝜃 𝑢

wn = 1

The winding number algorithm

Any closed curve 𝐶 is homeomorphic to the unit circle, so we can
use a polar coordinate description to define the winding number:

wn 𝐶 =
1

2𝜋
ර
𝐶

𝑑𝜃 =
1

2𝜋
න

0

1

𝜃 𝑢 d𝑢

u

𝜃 𝑢

wn = 2

The winding number algorithm

For polygons of course, the formulas become more concrete:

wn 𝐶 =
1

2𝜋
ර
𝐶

𝑑𝜃 =
1

2𝜋
න

0

1

𝜃 𝑢 d𝑢

=
1

2𝜋
෍

𝑖=0

𝑛−1

𝜃𝑖 =
1

2𝜋
෍

𝑖=0

𝑛−1

acos
(𝑉𝑖 − 𝑃)(𝑉𝑖+1 − 𝑃)

𝑉𝑖 − 𝑃 |𝑉𝑖+1 − 𝑃|
𝑉0 = 𝑉5

𝑉1

𝑉2

𝑉3

𝑉4

𝑃

The winding number algorithm

In reality, we do not want to compute inverse trigonometric
functions, but fortunately we don’t need to:

Based on the unit circle correspondence,
We only need to track, how many times
traversal passes the ray intersection points
on the boundary!

𝑉0 = 𝑉5

𝑉1

𝑉2

𝑉3

𝑉4

𝑃

u

𝜃 𝑢

𝑄

𝑃

𝑄

The winding number algorithm

In reality, we do not want to compute inverse trigonometric
functions, but fortunately we don’t need to:

Based on the unit circle correspondence,
We only need to track, how many times
traversal passes the ray intersection points
on the boundary!

This gets awkwardly similar
to the ray intersection alg…

𝑉0 = 𝑉5

𝑉1

𝑉2

𝑉3

𝑉4

𝑃

u

𝜃 𝑢

𝑄

𝑃

𝑄

The winding number algorithm

But we do not need the intersections, we just need a sign,
if an edge is being crossed in one direction, or the other
also, we can choose any ray direction, so let's choose a horizontal one:

𝑃
𝑄

𝑉𝑖

𝑉𝑖+1

𝑃

𝑄

𝑉𝑖+1

𝑉𝑖

𝑃

𝑄

Upward
crossing
𝑤𝑛 += 1

Downward
crossing
𝑤𝑛 −= 1

This relative orientation is obtained
by computing the signed area of
the 𝑉𝑖𝑉𝑖+1𝑃 triangle

𝑃′
𝑄′1 𝑄′2

wn(P) = 1

wn(P’) = (-1)+(+1) = 0

The winding number algorithm

But we do not need the intersections, we just need a sign,
if an edge is being crossed in one direction, or the other
also, we can choose any ray direction, so let's choose a horizontal one:

𝑄2

𝑉𝑖

𝑉𝑖+1

𝑃

𝑄

𝑉𝑖+1

𝑉𝑖

𝑃

𝑄

Upward
crossing
𝑤𝑛 += 1

Downward
crossing
𝑤𝑛 −= 1

This relative orientation is obtained
by computing the signed area of
the 𝑉𝑖𝑉𝑖+1𝑃 triangle

𝑄1

wn(P) = +2

𝑃

The winding number algorithm

The signed area of a triangle can be obtained by the determinant:

𝐴 =
1

2

1 𝑥0 𝑦0
1 𝑥1 𝑦1
1 𝑥2 𝑦2

That can also be written:

𝐴 =
1

2
𝑥1 − 𝑥0 𝑦2 − 𝑦0 − 𝑥2 − 𝑥0 𝑦1 − 𝑦0 𝑉𝑖

𝑉𝑖+1

𝑃

𝑄

The winding number algorithm

Putting everything together, the following algorithm computes the
winding number wn of point P for a polygon given by a list of vertices
using a horizontal ray:

wn = 0

Loop over edges
Let V0, V1 be the end points of the current edge

if(V1.y <= P.y)
{
if(V0.y > P.y && area(V1, V0, P) > 0){ wn += 1 }

}
else if(V0.y <= P.y && area(V1, V0, P) < 0){ wn -= 1 }

The winding number algorithm

Problem: We need to test millions of pixels

The naïve algorithm tests every pixel with every edge,
this is clearly inefficient

What can we do?

The winding number algorithm

Problem: We need to test millions of pixels

The naïve algorithm tests every pixel with every edge,
this is clearly inefficient

What can we do?

As usual: acceleration structures / early reject

The winding number algorithm - optimizations

Acceleration structures / early reject:
If we have a tile of pixels that is sufficiently far away from the
polygon boundaries, it is either entirely inside, or outside, so
checking a single point is sufficient

The winding number algorithm - optimizations

Acceleration structures / early reject:
We could compute the minimal distance of the polygon edges to
the radius of the circumscribed circle of a square tile:

The winding number algorithm - optimizations

Signed Distance Fields: an easy to compute function that measures
distance from a shape
(+) outside
(-) inside

See Inigo Quilez’s webpage
for formulas and articles

Shadertoy – SDF arbitrary 2D polygon by wagyx

https://iquilezles.org/articles/distfunctions2d/
https://www.shadertoy.com/view/WdSGRd

The winding number algorithm - optimizations

Signed Distance Fields: an easy to compute function that measures
distance from a shape

We could take the distance function of segments,
and compute the minimum of them

https://iquilezles.org/articles/distfunctions2d

https://iquilezles.org/articles/distfunctions2d/

The winding number algorithm - optimizations

The key insight is the following:

Both the winding number contributions and the line segment SDFs
can be computed in parallel for all the edges!

Our threads in a thread block can each pick a segment and
compute these simple formulas for the edge’s contribution, and we
just need to accumulate these partial results.

The winding number algorithm - optimizations

With large enough tiles, we
can reject large areas, but
close to the edges we still
need to handle all edges for
all pixels…

The winding number algorithm - optimizations

It turns out, that only those edges contribute non-zero to the
winding number, that are to the right of the point
and whose end’s y values are on two sides of the point’s y coords.

The winding number algorithm - optimizations

So, we can filter all the edges (again can be done in parallel)
if they are relevant to a particular tile or not:

Usually this narrows down the pixel tests to only a few edges per tile

Results

Let’s compare the point in&out rasterization timings (poly: 126 edges):

Naïve: 0.456 ms 2.09 ms
Tiled: 0.065 ms 0.32 ms
Edge filtered: 0.033 ms 0.22 ms
Tiled+Edge filtered: 0.030 ms 0.10 ms

Reference:
vct clear: 0.01 ms 0.068 ms

RTX 4080 Super
4.15 Mpx

GTX 1650 Mobile
2.07 Mpx

30% of ref mem BW 68% of ref mem BW

15x-20x
speed-up

Summary

• When porting algorithms to the GPU, first consider the high-level
algorithms, and how they can be parallelized efficiently

• Even without micro-optimizations, very large gains are possible
over naïve implementations

• Fast image processing codes are in dire need all over the world for
various applications

Hungarian GPGPU Community on Discord

• Meeting place for all who are involved in, or
would like to learn more of GPGPU
technologies

• All APIs: CUDA, OpenCL, Vulkan, OpenGL, …

• All fields: Graphics, Compute, Machine
Learning, …

• All vendors: AMD, Intel, NVIDIA, …

• All levels: Students, Teachers, Professionals,
Scientists, …

• All topics: Programming, Bugs, Optimizations,
Teaching, Trends, Events, News, …

	1. dia: Parallel image reductions over polygon masks
	2. dia: Motivation
	3. dia: Motivation
	4. dia: Motivation
	5. dia: Motivation - polygons
	6. dia: Reductions
	7. dia: Masked reductions
	8. dia: Polygons
	9. dia: Polygons
	10. dia: Point in polygon problem
	11. dia: Point in polygon problem
	12. dia: Point in polygon problem
	13. dia: The winding number algorithm
	14. dia: The winding number algorithm
	15. dia: The winding number algorithm
	16. dia: The winding number algorithm
	17. dia: The winding number algorithm
	18. dia: The winding number algorithm
	19. dia: The winding number algorithm
	20. dia: The winding number algorithm
	21. dia: The winding number algorithm
	22. dia: The winding number algorithm
	23. dia: The winding number algorithm
	24. dia: The winding number algorithm - optimizations
	25. dia: The winding number algorithm - optimizations
	26. dia: The winding number algorithm - optimizations
	27. dia: The winding number algorithm - optimizations
	28. dia: The winding number algorithm - optimizations
	29. dia: The winding number algorithm - optimizations
	30. dia: The winding number algorithm - optimizations
	31. dia: The winding number algorithm - optimizations
	32. dia: Results
	33. dia: Summary
	34. dia

