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Who are we?

e SWE consulting and development since 2020

o Everything from applications to drivers
o Specialized in middleware and technology enablers
o Supporters and contributors of open standards
o Some of our projects:
m  Vulkan® SC™ ecosystem
RASTERGRID m Vulkan® Video specs and tooling
Daniel Rakos - Founder & CEO Maté Ferenc Nagy-Egri - Senior SWE
o graphics and hardware enthusiast o HPC and scientific compute expert
o CO-,Cco-,..co-creator of Vulkan® o Hungarian GPU community builder
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Why are we talking about a

graphics API here?




It's GPU Day after all, right?
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It's GPU Day after all, right?
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It's GPU Day after all, right?
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Current compute landscape
with Vulkan®

e Vulkan® has compute shaders (kernels) since day zero, but...

o uses another flavor of SPIR-V with some capability and semantic differences
o does not have the same precision requirements (graphics can get away with less)
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Current compute landscape
with Vulkan®

e Vulkan® has compute shaders (kernels) since day zero, but...

o uses another flavor of SPIR-V with some capability and semantic differences
o does not have the same precision requirements (graphics can get away with less)

OpenCLC

l

clspv

OpenCL API

l

l

Vulkan
SPIR-V

clvk

l

Vulkan API

OpenCL

l

l Rusticl I

l

Gallium drivers
(Vulkan through Zink)
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Warning: explicit content
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Not that kind of explicit
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Not that kind of explicit
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Not that kind of explicit
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So what is an explicit API?

explicit != lowlevel
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So what is an explicit API?

explicit != lowlevel

Behavior transparency & predictability

Better application control through expressiveness
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Driver magic vs

application control
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Basic operation of a GPU stack

Applicqtion shader source API calls
SYSTEM MEMORY
\ 4 Y
shader compiler API runtime
UMD
(user mode driver) \ 4 y }
shader ISA » command buffer |« resources GPU visible part of
system memory
_________________________________________________________________________________________________ cached?
Y . 4 coherent?
KMD kernel scheduler < emony;
(kernel mode driver) manager
Y
Command Processor
GPU CPU visible part
v v >
Shader Cores VRAM

* Read more about memory types of discrete GPUs © RasterGrid Kft. 2024 - Page 16



https://www.rastergrid.com/blog/gpu-tech/2020/11/memory-types-of-discrete-gpus/

Case study #1:
Buffer allocation

CreateBuffer

driver
magic

|

Buffer resource
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Case study #1:
Buffer allocation

CreateBuffer driver needs to decide GUESSWORK
which memory type to

.y place the resource in

. 1

what did the author mean?

1
'
. 1
1
]

v EXPENSIVE!
request a new device <«
memory allocation from device memony
dilver the KMD I.f needed  “----. N
magic :
v )| suballocation
suballocate memory for ==~
the created resource
v
automagically track COMPLEX WITH
Buffer resource |q...----------"-"""" lifetime of and access to 4 MANY PITFALLS!
the created resource
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Case study #1:
Buffer allocation

GetBufferMemory

CreateBuffer — Requirements

application gets a
list of compatible

\4

NO DRIVER MAGIC! memory types etc.
simply creates
resource without
memory backing l

application
suballocates from
device memory

,, l

Buffer resource < BindBufferMemory

if needed

— AllocateMemory

explicit memory type

NO DRIVER MAGIC!

request new device

memory allocation
from the KMD

\ 4
» Device memory
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Case study #2:
Buffer mapping

MapBuffer

|

driver
magic

v

mapped address

UnmapBuffer

|

driver
magic
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Case study #2:
Buffer mapping

MapBuff may be able to

ikl UNEXPECTED actually map the «—— EXPENSIVE!

i & memory for real

L 4
may wait if buffer is~ may allocate extra allocation
driver ----------- » CUrrentIy inuse by """"" >» new piece of <4+ doubled
magic therGPU memory instead memory usage
v UNEXPECTED
¢ HUGELY then optionally copy 4—
mapped address EXPENSIVE the real data to the - I
HIDDEN COST !!! "fake" mapping HIDDEN COST!
UnmapBuffer 1
P may unmap € EXPENSIVE!
i el may not actually UNEXPECTED
unmap anything to
T - » reuse mapped
driver -7 address later may have to copy HIDDEN COST!
magic 7T > data from fake
mapping to real
resource
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Case study #2:
Buffer mapping

e Vulkan® is explicit about the memory types
o Ifitis host-visible then you can map it to CPU address space - NO DRIVER MAGIC!
o Otherwise you cannot map it
e Caching and coherency behavior is explicit
o No accidental 100x slowdown on CPU reads of uncached data
o Application decides when to flush/invalidate non-coherent memory
e No implicit synchronization
o No unexpected GPU or CPU stalls
e Copying is not necessarily bad in all cases

o It's the only option for non-host-visible VRAM anyway
o Uploading/downloading “GPU-only” resources on dGPU - async DMA engine
o But the application chooses when to do a copy and how to manage the memory
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Case study #3:
Workload submission

S

© 0N Ok owd -

Launch kernel
Launch kernel
Launch kernel
Launch kernel
Flush

Launch kernel
Do a copy
Flush

Launch kernel
Launch kernel
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Case study #3:
Workload submission

S

© 0N Ok owd -

Launch kernel driver may submit at this point

Launch kernel because it feels the command buffer
Launch kernel/ is large enough

Launch kernel

Flush <— driver may ignore this flush because
— the workload is too small
Launch kernel KERNEL SUBMISSIONS ARE EXPENSIVE!

Do a copy
Flush large copies are better suited for DMA transfer
Launch kernel but involve cross-queue synchronization

Launch kernel DRIVER MAGIC - unclear what happens
behind the scenes

© RasterGrid Kft. 2024 - Page 24



Case study #3:
Workload submission

e Command buffers are directly exposed in Vulkan®
o Application decides how large it makes them
o ..and when it submits them (potentially multiple times as they are reusable)
e Vulkan® exposes HW engines explicitly
o Separate queues for graphics, compute, transfer (DMA), video coding, etc.
o Application decides what it submits and where
e Need to be careful about the number of submissions
o Involves a kernel request and thus it is expensive
o Prefer to do only a few submissions / frame
e Command buffer size is something the application should tune

o More commands - lower cumulative submission cost
o Fewer commands - may be able to achieve lower latency
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Case study #4:

Synchronization

Buffer resource

tracking information

e command buffers
that refer to it

e commands that
read/write from it

e etc.

synchronization
primitives associated
with the resource

\

Execution Control

signal completion

wait completion

Cache Control

flush caches

invalidate caches
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Case study #4:
Synchronization

Traditional APIs only offer limited control over synchronization

o There are some controls but there's a lot of implicit magic sync behind the scenes
Drivers track synchronization requirements with resources

o  Granularity of synchronization is typically tied with them

Too many things are bundled together into a “resource”

o Resource view - as seen by GPU

o Resource storage - the memory

o Execution control - what to wait for and where

o Cache control - what caches to flush [/ invalidate and when

Compute is simple
o Single-stage pipeline with shader (kernel) read/write access
o Gets complicated as you have to interop with other workloads

© RasterCGrid Kft. 2024 - Page 27



Case study #5:
Interop and resource sharing

e Traditional interop is defined between 2 APIs

N:M APl interop hell
Other API Other API
A

A
\ 4

\ 4

Other API

Y

> Other API
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Case study #5:
Interop and resource sharing

e Traditional interop is defined between 2 APIs
e May involve expensive driver magic

o Additional copies (no “real” sharing) and overly conservative synchronization
o Often unclear lifetimes and transference semantics

N:M APl interop hell

Other APl = » Other API
J driver driver L

[

' magic magic A
Your API
< r:r;‘;.r: missing link Y
Otheﬁj ;qher AP
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Case study #5:
Interop and resource sharing

e Vulkan® does not try to kid itself
o External sharing semantics depend on the platform - don't try to hide it

e Avoids interop API hell and enables sharing with a wider set of peers

{ Vulkan® }
Other API Y y Other API
\ 4 A\
platform-specific platform-specific
Other API resource handle sync handle Other API
D3D Resource NT handle D3D Fence NT handle
dmabuf fd sync fd
Other API Android HW buffer maybe other handle Other API

types in the future
other bus-addressable

handle [ address
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With great power comes
great responsibility

e In general, Vulkan® enables extracting that last 10% of performance

e In some cases no traditional APl can even compete with it
o When you need
m full control over where, in memory, your resources are placed
m Mmore control over your memory budget
o  When predictability is of utmost importance
m No unexpected allocations, copies, synchronization, etc.

e It's not for everybody and not for every job
o Certainly not the most pleasant prototyping tool
o It also makes it easier to shoot yourself in the foot
m even performance-wise

e But if you're a good cook you can make the best meal with it
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Thank you!

Questions?

read more about such topics on our pblog
we're always looking for passionate people
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