| ’4 RASTERGRID

Going explicit with your GPU

workloads using Vulkan®

Daniel RGkos
Maté Ferenc ngy Egrl

tttttttttttttttttttttttt

Who are we?

e SWE consulting and development since 2020

o Everything from applications to drivers
o Specialized in middleware and technology enablers
o Supporters and contributors of open standards
o Some of our projects:
m Vulkan® SC™ ecosystem
RASTERGRID m Vulkan® Video specs and tooling
Daniel Rakos - Founder & CEO Maté Ferenc Nagy-Egri - Senior SWE
o graphics and hardware enthusiast o HPC and scientific compute expert
o CO-,Cco-,..co-creator of Vulkan® o Hungarian GPU community builder

© RasterGrid Kft. 2024 - Page 2

| 74 RASTERGRID

Why are we talking about a

graphics API here?

It's GPU Day after all, right?

§ (hedul [registerfile [scheduler [registerfile =
) ‘ s
E & | 3 O
= 2 ALUs—-- H-Ae - | (2 9
o
& O | s [bs [shareamemory | | 1 | S | sharedmemory | | | 2 ’g’
(2 o
g (hedul [regi file [scheduler [register file '8
= | [=
— —ALUs B ALUs T | =
g s | bs [sharedmemory | | IS | DS | sharedmemory | | | %
o
= £ NE)
< 8 DEVICE LEVEL CACHE 3 e
o < 2 >
z) |5
(a] g '8 g
5 (hedul [regi file (scheduler [register file %
- NNARREE
g 1$ | DS | sharedmemory | 1§ | D$ | sharedmemory | CZ)
= & 3 =)
< % (hedul [registerfile [scheduler [register file S o)
o
x - n - >
& ALUs e TAlUSs | |2
= : | e =
2| | Cis Tos s | oS 5

COMMAND PROCESSOR]

© RasterCrid Kft. 2024 - Page 4

It's GPU Day after all, right?

. (ckom | (ceom] [(ceom| [(GeoM | [RasT | (RasT | (RasT | [RasT |||,
E § TEX 1 register file TEX [registerfile _] TEX § v]
< | % TEX M:UF TEX TEX AlHUISI } TEX § | ;
g % TEX IS | DS | J shared memory TEX TEX s DS 1 shoreJd memory TEX % g

E TEX : register file TEX TEX ‘ T ister file]‘ TEX E

L TEX AI.J TEX TEX plﬁu‘s‘ TEX L

) TEX s DS | shared memory TEX TEX 1S | DS | I shared memory TEX ()

&| | [cotor] (cotor] [color] [color| (DeptH] (DEPTH] (DEPTH] (DEPTH] | |E

3 5
= el 3 g
< 13 DEVICE LEVEL CACHE ‘ SH— B
a = aE z

Q o

E (ceom | (ceom] [(ceom| (eEoM| [RasT | [RasT | (RAST | [RasT | -

L TEX { W register il TEX (r‘egis!erlil] TEX L J

M) TEX AL | TEX TEX } AlHd[s' % TEX M)

E TEX L ‘ shared memory TEX TEX IS | bs | | shureldmemo TEX §
E % TEX ‘ r‘egisterﬁle TEX TEX ‘ registerfile | % g
é 1 § TEX A—I:%s TEX TEX Al{ju‘sJ % TEX o B

E
o é TEX IS | DS | ‘ shared memory TEX TEX 1S | ps | l shared memory TEX ?O_j g

*| | [coor] (color]| ([color| [color] (DEPTH] (DEPTH] (DEPTH] [DEPTH] 3

DMAC | | DMAC [A/V J [COMMAND PROCESSOR] ‘ pec | [ENC] [MVE]

© RasterGrid Kft. 2024 - Page 5

It's GPU Day after all, right?

= (ceom] [ceom| [ceom] [ceom| [(RasT | [RasT | [RasT | [RasT | z
CPU = g = [registerfiie] Ty [_ﬁ‘Lcnodu‘lcrﬁ T iryeglsler(lla | § S other
2
g A TEX ALUs TEX TEX i '*‘“ﬂs!i JIE a4 ; GPUs
=) % TEX] is b8 L enored memory TEX TEX] "is | bs [shareamemory | |IEX g <
é -TEX (> Togister il TEX -TEX [I : rogistor filo 1 TEX E
TEX ALUs } TEX TEX : Aw\si ‘ TEX
M TEX| | is | bs | shareamemory TEX TEX| "is | bs | shareamemory | [TEX M)
system €| | [cowor] [cowor] [cotor] [cowor| (DeptH] (DePTH] (DEPTH]) [DEPTH) § storage
memory < 3 5 o
= <
< ——§ \ DEVICE LEVEL CACHE S H— ;
o ® Z
(=] S 2 g
g (ctom) (ctom) [cEom) [(GEom| [((RasT | [((RAsT | ((RAsT | [(RasT |||
) (s ‘ r‘eglrer file | TEX [‘ ‘ : I rloglsler file TEX L J
ISP) TEX | HH ALUs i TEX i A‘Ld 1 NIC
E TEX is | D$ | sharedmemory | TEX s | bs | s‘hu‘re’dr‘nemog §
¢}
E ; TEx| : rogistor flo TEX Tex) | i T ‘ registerfile] (Tey % g
o —'§ TEX ! A;tUs ; TEX TEX : A:_USI : TEX S P
2
a § TEX s D$ ahure‘dmemo[x TEX TEX 1S [bs | :hu‘redmemol_'z TEX 5 g
= [coor] [color] [cotor] [cowor| (DeptH| (DEPTH] (DEPTH] [DEPTH) 3 canture
sensor — - deF\'lice
DMAC | DMAC [A/V] [COMMAND PROCESSOR ‘ | DEC | [ENC] [MVE }

© RasterCGrid Kft. 2024 - Page 6

Current compute landscape
with Vulkan®

e Vulkan® has compute shaders (kernels) since day zero, but...

o uses another flavor of SPIR-V with some capability and semantic differences
o does not have the same precision requirements (graphics can get away with less)

© RasterCrid Kft. 2024 - Page 7

Current compute landscape
with Vulkan®

e Vulkan® has compute shaders (kernels) since day zero, but...

o uses another flavor of SPIR-V with some capability and semantic differences
o does not have the same precision requirements (graphics can get away with less)

OpenCLC

l

clspv

OpenCL API

l

l

Vulkan
SPIR-V

clvk

l

Vulkan API

OpenCL

l

l Rusticl I

l

Gallium drivers
(Vulkan through Zink)

© RasterGrid Kft. 2024 - Page 8

| 74 RASTERGRID

Warning: explicit content

© RasterGrid Kft. 2024 - Page 9

Not that kind of explicit

© RasterGrid Kft. 2024 - Page 10

Not that kind of explicit

© RasterCGrid Kft. 2024 - Page 11

Not that kind of explicit

© RasterGrid Kft. 2024 - Page 12

So what is an explicit API?

explicit != lowlevel

© RasterGrid Kft. 2024 - Page 13

So what is an explicit API?

explicit != lowlevel

Behavior transparency & predictability

Better application control through expressiveness

© RasterCrid Kft. 2024 - Page 14

| 74 RASTERGRID

Driver magic vs

application control

© RasterCGrid Kft. 2024 - Page 15

Basic operation of a GPU stack

Applicqtion shader source API calls
SYSTEM MEMORY
\ 4 Y
shader compiler API runtime
UMD
(user mode driver) \ 4 y }
shader ISA » command buffer |« resources GPU visible part of
system memory
___ cached?
Y . 4 coherent?
KMD kernel scheduler < emony;
(kernel mode driver) manager
Y
Command Processor
GPU CPU visible part
v v >
Shader Cores VRAM

* Read more about memory types of discrete GPUs © RasterGrid Kft. 2024 - Page 16

https://www.rastergrid.com/blog/gpu-tech/2020/11/memory-types-of-discrete-gpus/

Case study #1:
Buffer allocation

CreateBuffer

driver
magic

|

Buffer resource

© RasterGrid Kft. 2024 - Page 17

Case study #1:
Buffer allocation

CreateBuffer driver needs to decide GUESSWORK
which memory type to

.y place the resource in

. 1

what did the author mean?

1
'
. 1
1
]

v EXPENSIVE!
request a new device <«
memory allocation from device memony
dilver the KMD I.f needed “----. N
magic :
v)| suballocation
suballocate memory for ==~
the created resource
v
automagically track COMPLEX WITH
Buffer resource |q...----------"-"""" lifetime of and access to 4 MANY PITFALLS!
the created resource

© RasterCrid Kft. 2024 - Page 18

Case study #1:
Buffer allocation

GetBufferMemory

CreateBuffer — Requirements

application gets a
list of compatible

\4

NO DRIVER MAGIC! memory types etc.
simply creates
resource without
memory backing l

application
suballocates from
device memory

,, l

Buffer resource < BindBufferMemory

if needed

— AllocateMemory

explicit memory type

NO DRIVER MAGIC!

request new device

memory allocation
from the KMD

\ 4
» Device memory

© RasterCrid Kft. 2024 - Page 19

Case study #2:
Buffer mapping

MapBuffer

|

driver
magic

v

mapped address

UnmapBuffer

|

driver
magic

© RasterGrid Kft. 2024 - Page 20

Case study #2:
Buffer mapping

MapBuff may be able to

ikl UNEXPECTED actually map the «—— EXPENSIVE!

i & memory for real

L 4
may wait if buffer is~ may allocate extra allocation
driver ----------- » CUrrentIy inuse by """"" >» new piece of <4+ doubled
magic therGPU memory instead memory usage
v UNEXPECTED
¢ HUGELY then optionally copy 4—
mapped address EXPENSIVE the real data to the - I
HIDDEN COST !!! "fake" mapping HIDDEN COST!
UnmapBuffer 1
P may unmap € EXPENSIVE!
i el may not actually UNEXPECTED
unmap anything to
T - » reuse mapped
driver -7 address later may have to copy HIDDEN COST!
magic 7T > data from fake
mapping to real
resource

© RasterGrid Kft. 2024 - Page 21

Case study #2:
Buffer mapping

e Vulkan® is explicit about the memory types
o Ifitis host-visible then you can map it to CPU address space - NO DRIVER MAGIC!
o Otherwise you cannot map it
e Caching and coherency behavior is explicit
o No accidental 100x slowdown on CPU reads of uncached data
o Application decides when to flush/invalidate non-coherent memory
e No implicit synchronization
o No unexpected GPU or CPU stalls
e Copying is not necessarily bad in all cases

o It's the only option for non-host-visible VRAM anyway
o Uploading/downloading “GPU-only” resources on dGPU - async DMA engine
o But the application chooses when to do a copy and how to manage the memory

© RasterGrid Kft. 2024 - Page 22

Case study #3:
Workload submission

S

© 0N Ok owd -

Launch kernel
Launch kernel
Launch kernel
Launch kernel
Flush

Launch kernel
Do a copy
Flush

Launch kernel
Launch kernel

© RasterCGrid Kft. 2024 - Page 23

Case study #3:
Workload submission

S

© 0N Ok owd -

Launch kernel driver may submit at this point

Launch kernel because it feels the command buffer
Launch kernel/ is large enough

Launch kernel

Flush <— driver may ignore this flush because
— the workload is too small
Launch kernel KERNEL SUBMISSIONS ARE EXPENSIVE!

Do a copy
Flush large copies are better suited for DMA transfer
Launch kernel but involve cross-queue synchronization

Launch kernel DRIVER MAGIC - unclear what happens
behind the scenes

© RasterGrid Kft. 2024 - Page 24

Case study #3:
Workload submission

e Command buffers are directly exposed in Vulkan®
o Application decides how large it makes them
o ..and when it submits them (potentially multiple times as they are reusable)
e Vulkan® exposes HW engines explicitly
o Separate queues for graphics, compute, transfer (DMA), video coding, etc.
o Application decides what it submits and where
e Need to be careful about the number of submissions
o Involves a kernel request and thus it is expensive
o Prefer to do only a few submissions / frame
e Command buffer size is something the application should tune

o More commands - lower cumulative submission cost
o Fewer commands - may be able to achieve lower latency

© RasterGrid Kft. 2024 - Page 25

Case study #4:

Synchronization

Buffer resource

tracking information

e command buffers
that refer to it

e commands that
read/write from it

e etc.

synchronization
primitives associated
with the resource

\

Execution Control

signal completion

wait completion

Cache Control

flush caches

invalidate caches

© RasterGrid Kft. 2024 - Page 26

Case study #4:
Synchronization

Traditional APIs only offer limited control over synchronization

o There are some controls but there's a lot of implicit magic sync behind the scenes
Drivers track synchronization requirements with resources

o Granularity of synchronization is typically tied with them

Too many things are bundled together into a “resource”

o Resource view - as seen by GPU

o Resource storage - the memory

o Execution control - what to wait for and where

o Cache control - what caches to flush [/ invalidate and when

Compute is simple
o Single-stage pipeline with shader (kernel) read/write access
o Gets complicated as you have to interop with other workloads

© RasterCGrid Kft. 2024 - Page 27

Case study #5:
Interop and resource sharing

e Traditional interop is defined between 2 APIs

N:M APl interop hell
Other API Other API
A

A
\ 4

\ 4

Other API

Y

> Other API

© RasterGrid Kft. 2024 - Page 28

missing link

A

Case study #5:
Interop and resource sharing

e Traditional interop is defined between 2 APIs
e May involve expensive driver magic

o Additional copies (no “real” sharing) and overly conservative synchronization
o Often unclear lifetimes and transference semantics

N:M APl interop hell

Other APl = » Other API
J driver driver L

[

' magic magic A
Your API
< r:r;‘;.r: missing link Y
Otheﬁj ;qher AP

© RasterGrid Kft. 2024 - Page 29

Case study #5:
Interop and resource sharing

e Vulkan® does not try to kid itself
o External sharing semantics depend on the platform - don't try to hide it

e Avoids interop API hell and enables sharing with a wider set of peers

{ Vulkan® }
Other API Y y Other API
\ 4 A\
platform-specific platform-specific
Other API resource handle sync handle Other API
D3D Resource NT handle D3D Fence NT handle
dmabuf fd sync fd
Other API Android HW buffer maybe other handle Other API

types in the future
other bus-addressable

handle [address

© RasterCGrid Kft. 2024 - Page 30

With great power comes
great responsibility

e In general, Vulkan® enables extracting that last 10% of performance

e In some cases no traditional APl can even compete with it
o When you need
m full control over where, in memory, your resources are placed
m Mmore control over your memory budget
o When predictability is of utmost importance
m No unexpected allocations, copies, synchronization, etc.

e It's not for everybody and not for every job
o Certainly not the most pleasant prototyping tool
o It also makes it easier to shoot yourself in the foot
m even performance-wise

e But if you're a good cook you can make the best meal with it

© RasterGrid Kft. 2024 - Page 31

| 74 RASTERGRID

Thank you!

Questions?

read more about such topics on our pblog
we're always looking for passionate people

© RasterCGrid Kft. 2024 - Page 32

https://www.rastergrid.com/blog/
https://www.rastergrid.com/jobs/

