
Testing for connection between opposite
edges of small rectangular bit grids in CUDA

István Borsos

EK-HUN-Ren Centre for Energy Research, MFA, Budapest, Hungary

GPU Day 2024
May 30-31, 2024

Budapest, Hungary

1 / 18

Connection problem

Given a square grid with some sites occupied, the rest is empty.
To be decided if there is a path from top to bottom assuming
some neighbourhood is defined between the sites.

2 / 18

Some neighbourhood examples

3 / 18

Traditional sequential algorithm
It is a one-pass algorithm with Union-Find data structure (from
the "golden age" of sequential algorithms 1965-1985)

I Step 1. Initially the occupied sites are single element
subsets of their base set

I Step 2. The sites are visited one by one and if they are
connected to some of their neighbours (as deduced by
executing two Find operations) the subsets containing
them are united by the Union operation.

I Step 3. Once it is found that one of the top row elements is
in the same subset as one of the bottom row elements, the
connection is found and the algorithm is exited.

I Step 4. Otherwise, if all sites are processed and no such
subset is found that means that no connection exists

4 / 18

Weaknesses

I Each site is assigned a unique number in the Union-Find
data structure, requiring relatively large storage space

I The Union-Find algorithm has an inherently irregular
memory access pattern making it difficult to implement
efficiently in SIMD-like machines.

I The elementwise processing has a large time overhead

5 / 18

Bit-parallel algorithm: data
Due to the dense storage and local neighbourhood, bit-parallel
algorithms are competitive both in storage space and in
execution time even though they perform multiple passes.
Furthermore from the CUDA point of view their parallel threads
versions are much less divergent.

I We have two bit matrices.
I The rows of these bit matrices are stored in 32-bit

unsigned integers
I One matrix, "A", is the input data that remains unchanged,

it is used during the search to restrict the reachable sites to
the originally occupied sites.

I The other matrix "reached" is used to store intermediate
data, it contains those occupied sites that are reached
from the top row at a given stage of the processing. Initially
it contains only the top row of A.

I The neighbourhood is implicitly handled in the processing
6 / 18

Bit-parallel algorithm: processing

I Top to bottom passes called "sweeps" are executed over
the matrices and newly reached sites are booked.

I In each step of a sweep a row is processed, the
neighbourhood of each site is checked for possible
connection

I These sweeps continue until one of two stopping
conditions are met

I Condition 1 No change in the reached sites after executing
a sweep: no connection exists

I Condition 2 The bottom row is reached: a connection exists

7 / 18

CUDA code critical part

// Test connection
for(int i=0; i<boardsize;i++) reached[i]=0;
reached[0]=A[0];
do {

changed=0;
#pragma unroll
for(int i=1; i<boardsize-1;i++){

old=reached[i];
reached[i]=reached[i] | reached[i]<< 1 | reached[i]>> 1 |

reached[i-1] | reached[i-1]>>1 |
reached[i+1] | reached[i+1]<<1;

reached[i]&=A[i];
changed=changed | (old ^ reached[i]);
};
reached[last]=reached[last] | reached[last]<< 1 |

reached[last]>> 1 |
reached[last-1] | reached[last-1]>>1;

reached[last]&=A[last];
nsweep++;

} while (reached[last] == 0 && changed!=0);

if (reached[last] > 0) nwon++; //connected

8 / 18

Average efficiency of the bit-parallel algorithm

I The time consumed by the algorithm is mainly determined
by the average number of sweeps.

I In turn, the average number of sweeps is determined by
the density of the occupied sites

9 / 18

Example
Grid 32x32 sites, hexagonal neighbourhood

Occupied site density: 0.25
Average number of sweeps: ∼ 3 (connection easily refuted
because of low density)

Occupied site density: 0.5
Average number of sweeps: ∼ 10 (connection neither easily
refuted, nor easily found)

Occupied site density: 0.75
Average number of sweeps: ∼ 1 (connection easily found
because of high density)

10 / 18

Sweep divergence within a warp

There is a loop-divergence in the threads because the number
of sweeps depends on the specific site configuration processed
by each thread.
An example of the distribution of the number of sweeps in a
warp as each thread solves a single connection problem: the
average number of sweeps is 11.5, the maximum is 29.

11 / 18

CUDA cycles

GPU used in the test: RTX 4070 Ti Super
Clock: 2340 MHz
Processors: 8448 shaders
Total number of cycles for all processors:
1.98e13 total cycles/sec (19.8 Teracycles/sec)

Test grid: 32x32, hexagonal neighbourhood, p=0.5
Test speed: 1.9e9 total grids/sec (1.9 billion grdis/sec)
Average clock cycles: 10400 cycles/grid
A sweep pass executes about 500 instructions and on the
average we execute 10.2 sweeps/grid
So about 5000 instructions are executed for each grid in 10400
cycles, in each thread.
Power consumption 188W (of 285W TDP)

12 / 18

Smaller grid scaling

Grid: 32x32, hexagonal neighbourhood, density=0.5

Speed: 1.9 billion grids/second
Average number of sweeps: 10.2

Grid: 16x16, hexagonal neighbourhood, density=0.5

Speed: 8.1 billion grids/second
Average number of sweeps: 4.6

Grid: 8x8, hexagonal neighbourhood, density=0.5

Speed: 33.6 billion grids/second
Average number of sweeps: 2.4

13 / 18

Reducing thread divergence loss
Simple natural way for a thread program

I for each of N inputs
I generate an input instance
I do
I sweeps
I while connection is not solved

Another way: the same computation is reordered in another
conditional structure:

I do
I sweeps
I if an input instance is solved,
I generate a new input instance for the given thread
I replace the old instance in the bit matrices
I while there are inputs to be processed by the thread

14 / 18

Reducing thread divergence loss

I The loop-divergence is passed from the sweeps (which
now always work in lockstep for the life of the threads) to
the if-divergence of the input generation (which now may
diverge).

I But if input generation is faster than the average time to
solve an instance or the distribution of the divergence is
better, we can expect some speedup

I A some loop-divergence remains in the finishing "while"
(not all threads execute the same number of number of
total sweeps), but if N is large, the Law of Large Numbers
takes care of it.

I For example, for N=10000, this divergence is only about 1
percent.

15 / 18

Measured speed comparison

I Grid: 32x32, hexagonal neighbourhood, density=0.5
I GPU used in the test: RTX 4070 Ti Super
I Natural way: 1.9 billion grids/sec
I Reordered way: 2.9 billion grids/sec

16 / 18

Scaling for other CUDA GPUs

As the program in the critical parts uses almost exclusively
registers, the speed is expected to scale according to the
raw computing speed of the various cards

17 / 18

Conclusion

I A high speed of connection testing is achievable in CUDA
for small grids with constant sized bit matrices.

I Thread divergence loss can be reduced by a simple
reordering of the computation, resulting in meaningful
speedup

Thank you for your attention.

18 / 18

