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Thermo-nuclear Fusion

ηEf is the usable energy

The loss is (1− η)(E0 + Eb)

E0 = 3nkT , Eb = bn2τ
√

T (thermal bremsstralung)

Giving the gain factor: Q = ηεnτvσ

4(1−η)(3kT +bnτ
√

T )

Q must be Q > 1 for energy production

This also means nτ > 3kT (1−η)
1
4 εη〈vσ〉−b(1−η)

√
T
→ LC
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Lawson criterion

Fulfilling the Lawson criterion

Magnetically confined plasmas: increase confinement time

Inertial confinement fusion: increase density of fusion plasma
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News on fusion

Quasi-IsoDynamic Stellarator

National Ignition Facility LLNL first
year of sooting
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Direct vs Indirect drive
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Hohlraum 2014

[O.A. Hurricane et al., Nature, 506, 343 (2014)]
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Hohlraum 2022

[A.B, Zylstra, O.A. Hurricane et al., Nature, 601, 542-548 (2022)]

8 / 39



Introduction
Modelling the Nanorod

Conclusions and the future

Inertial Confinement Fusion
Two ways
Radiation Dominated Implosion
Absorptivity by nano-technology

NIF older | newer target

thin plastic ablator | tungsten-doped diamond-like high density
carbon

gold hohlraum | depleted uranium hohlraum
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Rayleigh-Taylor instabilities

Latest (January 2023) news 3.15MJ kinetic energy at NIF with burning
time of 89-137 ps(?)
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Relativistic Fluid Dynamics

[Csernai, L.P. (1987). Detonation on a time-like front for relativistic
systems. Zh. Eksp. Teor. Fiz. 92, 379-386.]
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Constant absorptivity

[L.P. Csernai & D.D. Strottman, Laser
and Particle Beams 33, 279 (2015)]

αkmiddle = αkedge

Simultaneous volume ignition is only up
to 12%
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Changing absorptivity
[Csernai, L.P., Kroo, N. and Papp, I.
(2017). Procedure to improve the
stability and efficiency of laser-fusion by
nano-plasmonics method. Patent
P1700278/3 of the Hungarian
Intellectual Property Office.]

αkmiddle ≈ 4× αkedge

Simultaneous volume ignition is up to
73%
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Flat target, two sided shot

Schematic view of the cylindrical, flat target of radius, R, and thickness, h.
V = 2πR3, R = 3

√
V /(2π), h = 3

√
4V /π.

[L.P. Csernai, M. Csete, I.N. Mishustin, A. Motornenko, I. Papp, L.M. Satarov, H.
Stöcker & N. Kroó, Radiation- Dominated Implosion with Flat Target, Physics and
Wave Phenomena, 28 (3) 187-199 (2020)]
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Varying absorptivity, similar configuration
(a) (b)

Deposited energy per unit time in the space-time plane across the depth, h, of
the flat target. (a) without nano-shells (b) with nano-shells

Similar two sided shooting configuration was already scessful
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Nanorod

[W. J. Ding,et al., Particle simulation of plasmons Nanophotonics, vol. 9, no.
10, pp. 3303-3313 (2020)]
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Particle In Cell methods

[F.H. Harlow (1955). A Machine
Calculation Method for Hydrodynamic
Problems. Los Alamos Scientific
Laboratory report LAMS-1956]

[T.D. Arber et al 2015 Plasma Phys.
Control. Fusion 57 113001]

A super-particle (marker-particle) is a
computational particle that represents
many real particles.

Particle mover or pusher algorithm as
(typically Boris algorithm).

Finite-difference time-domain
method for solving the time evolution
of Maxwell’s equations.
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Particle shape

First order approximations are considered

Fpart = 1
2
Fi−1

(
1
2

+ xi−X
∆x

)2

+ 1
2
Fi

(
3
4
− (xi−X )2

∆x2

)2

+ 1
2
Fi+1

(
1
2

+ xi−X
∆x

)2

[EPOCH 4.0 dev manual]
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FDTD in EPOCH

E n+ 1
2

= E n + ∆t
2

(
c2∇× Bn − j n

ε0

)
Bn+ 1

2
= Bn − ∆t

2

(
∇× E n+ 1

2

)
Call particle pusher which calculates jn+1

Bn+1 = Bn+ 1
2
− ∆t

2

(
∇× E n+ 1

2

)
E n+1 = E n+ 1

2
+ ∆t

2

(
c2∇× Bn+1 −

j n+1

ε0

)
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Particle pusher

Solves the relativistic equation of motion under the Lorentz force for each
marker-particle

pn+1 = pn + q∆t
[
En+ 1

2

(
xn+ 1

2

)
+ vn+ 1

2
× Bn+ 1

2

(
xn+ 1

2

)]
p is the particle momentum q is the particle’s charge v is the velocity.

p = γmv , where m is the rest mass γ =
[
(p/mc)2 + 1

]1/2

Villasenor and Buneman current deposition scheme [Villasenor J & Buneman O
1992 Comput. Phys. Commun. 69 306], always satisfied: ∇ · E = ρ/ε0, where ρ
is the charge density.
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Metal Nanoparticles as Plasmas

The conduction band electrons in metals behave as strongly
coupled plasmas.
For golden nanorods of 25nm diameter in vacuum this gives an
effective wavelength of λeff = 266nm

λeff
2Rπ = 13.74− 0.12[ε∞+141.04]− 2

π + λ
λp

0.12
√
ε∞+141.04

[Lukas Novotny, Effective Wavelength Scaling for Optical
Antennas, Phys. Rev. Lett. 98, 266802 (2007).]
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Ideal world: orthogonal to beam line

Nanorod inside a PIC simulation box Evolution of the nanoantenna

Number density of electrons in
the middle of a nanorod of size
25x130 nm at different times.
The nanorod is orthogonal to
the beam direction, x .
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Real world: scattered
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Out of resonance (UDMA-TEGDMA copolymer)

(a) (b) (c)

Optical response of the gold nanorod with different numerical methods
and lengths, L = λeff /2, λeff /3and2λeff eff /3. (a) PIC, (b) FEM and (c)
FEM with normalized values to unit antenna length.
[I. Papp, L. Bravina, M. Csete, et al.(NAPLIFE Collaboration), Kinetic
model of resonant nanoantennas in polymer for laser induced fusion,
Frontiers in Physics, 11, 1116023 (2023).]
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Comparing orientation, shapes and sizes

We submerged the nanorods in Hydrogen medium

Species were separately defined: conducting electrons, Au ions, H atoms,
protons (H after ionized) and H electrons

(a) crossed quadruple (b) along the beam direction (c) laying or sleeping
policeman

28 / 39



Introduction
Modelling the Nanorod

Conclusions and the future

FEM approach
PIC approach
Kinetic Model in ionized Hydrogen medium

Comparing orientation, shapes and sizes
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Evolution of the E field’s polarization direction component from 42.4 till 45.7
fs, around a nanorod of 25x85 nm. I = 4 · 1015W/cm2

Also side view of the proper conducting electron density of dipole oriented in
parallel with polarization direction, in quarter of a period steps.
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Comparing orientation, shapes and sizes
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Evolution of the E field’s polarization direction component from 42.4 till 45.7
fs, around a crossed quadroupole (side view) of 25x85 nm. I = 4 · 1015W/cm2

Also side view of the proper conducting electron density in quarter of a period
steps.
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Comparing orientation, shapes and sizes
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Evolution of the E field’s polarization direction component from 42.4 till 45.7
fs, around a ”laying” sleeping police antenna of 25x85 nm. I = 4 · 1015W/cm2

Also side view of the proper conducting electron density in quarter of a period
steps. (Antenna is orthogonal to both polarization and beam direction).
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Comparing orientation, shapes and sizes
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Evolution of the E field’s polarization direction component from 42.4 till 45.7
fs, around a nanorod of 25x85 nm. I = 4 · 1015W/cm2

Also side view of the proper conducting electron density in quarter of a period
steps. (Nanorod is parallel to the beam, orthogonal to the polarization).
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Would spherical shapes be good then?

Time evolution of derived average energies of simulated ionized Hydrogen and
conducting electron species of the gold nanodopes of spherical shape; diameters of
dopes: 85 nm – black, 150 nm – green dashed, 42.5 nm – magenta, 25 nm – blue
lines. Medium laser pulse intensities: 4× 1015 W/cm2 with 120 fs.
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Cross checking

Time evolution of thr average energies of ionized Hydrogen and conducting electron
species of gold nanodopes: crossed quadroupoles – green dashed, dipole of size 25x85
nm and ideal orientation along the field polarization – magenta, dipole laying across
the field – blue, dipole along the pulse propagation – black lines. Medium laser pulse
intensities: 4× 1015 W/cm2 with 120 fs.
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Cross checking

Time evolution of thr average energies of ionized Hydrogen and conducting electron
species of gold nanodopes: crossed quadroupoles – green dashed, dipole of size 25x85
nm and ideal orientation along the field polarization – magenta, dipole laying across
the field – blue, dipole along the pulse propagation – black lines. Medium laser pulse
intensities: 4× 1017 W/cm2 with 120 fs.
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The model was proved to be in good agreement with currently available
widely accepted methods, allowing us to confidently experiment further

We compared various nanoantenna shapes, orientation and sizes

Increasing radius of spherical nanoparticles increases the absorption but
there is an apparent limit

Crossed quadruples show advantageous behaviour irrespective of the
orientation

Crossed quadruples come close to the resonant dipoles, moreover at
higher intensities can even perform better, which is promising for the
ELI-ALPS experiments

Further investigations will go to map the bet possibilites of target
fabrication
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Proton emmision from resonant targets

[Nuclear physics method to detect size, timespan and flow in nanoplasmonic
fusion L.P. Csernai, T. Csörgő, I. Papp, M. Csete, András Szenes, Dávid Vass,
T.S. Biró, N. Kroó; arXiv:2309.05156v3]
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Conical rods

Expectation: protons can leave the asymmetric nano-rod antenna more at the
sharp edge (like in case of lightening rods)
[J. Budai, Zs. Márton, M. Csete, 2024]
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