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The λas are generators of SU(3) color gauge group

[λa, λb] = 2if abcλc

qA → U(x)qA(x), U(x) = exp(iΘa(x)λa/2)
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Properties of the QCD Lagrangian

QCD without quarks is Yang-Mills (YM)

1). Universal coupling constant is strong, g ∼ 1.

2). In general, in QCD the PT does not work.

3). g ≪ 1 only in the AF regime, where the PT works.

4). But there is a scale breaking, appears Λ2
QCD .

5). The QCD Lagrangian by itself can explain neither scale
breaking nor confinement of the coloured quarks and gluons.



Phase transitions in QCD

I. The confinement phase transition at the fundamental
quark-gluon level in order to explain why all the physical states
are colour-singlets.

II. The PCAC (partial conserved axial currents) phase
transition at the hadronic level in order to explain the soft
pion physics (current algebra results).

The both phase transitions were not explained up to present
days though QCD has been formulated about five decades ago!



The confinement phase transition

The two conceptual problems of QCD

A. Whether the gauge symmetries of the QCD Lagrangian and
its ground state coincide or not?

B. The dynamical generation of a mass squared in the vacuum
of QCD, since the gauge invariance of its Lagrangian forbids
such kind of terms, like the gluon mass term M2

gAµAµ.

How does one get a mass out of massless theory?

’Mass without mass’ ! by F. Wilczek



Gluon SD equation
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Dµν(q) = D0
µν(q) + D0

µρ(q)iΠρσ(q;D)Dσν(q)

Πρσ(q;D) = Πq
ρσ(q) + Πg

ρσ(q;D) + Πt
ρσ(D)

Πg
ρσ(q;D) = Πgh

ρσ(q) + Π(1)
ρσ (q;D

2) + Π(2)
ρσ (q;D

4) + Π(2′)
ρσ (q;D3)

Πt
ρσ(D) ∼

∫
d4kDαβ(k)T

0
ρσαβ = gρσ∆

2
t (D) = [Tρσ(q)+Lρσ(q)]∆

2
t (D)

Πρσ(q;D) ≡ Πρσ(q; λ̃, α,D), Lρσ(q) =
qρqσ
q2

q2 → 0, qi → 0, q2 → −q2, gρσ → δρσ



Dilemma

The tadpole term breaks the QCD gauge symmetry! Why is it
present in the vacuum of QCD at all if it makes theory
un-renormalizable from the very beginning?

The standard solution was to remove this and all other such
kind of QD constants in accordance with the QCD Lagrangian
gauge symmetry! No mass scale parameter in this case!

However, here we are going to solve this dilemma by asking
the question is it possible to retain the tadpole term in the
QCD vacuum, but without affecting the PT renormalization
properties of the theory?

Unlike to all other QD terms, it is only one which generate a
mass squared scale parameter!



Dµν(q) = D0
µν(q) + D0

µρ(q)iΠρσ(q;D)Dσν(q)

Πρσ(q;D) = Πq
ρσ(q) + Πg

ρσ(q;D) + δρσ∆
2
t (D)

Dµν(q) = D0
µν(q) + D0

µρ(q)i [Π
q
ρσ(q) + Πg

ρσ(q;D)]Dσν(q)

+D0
µρ(q)iδρσ∆

2
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Slavnov-Taylor (ST) identities

they are exact constraints on any solution to QCD

qµqνDµν(q) = iξ, qµqνD
0
µν(q) = iξ0

Dµν(q) = i
{
Tµν(q)d(q

2) + ξLµν(q)
} 1

q2

D0
µν(q) = i {Tµν(q) + ξ0Lµν(q)}

1

q2

Tµν(q) = δµν − (qµqν/q
2) = δµν − Lµν(q)

ξ = f (q2; ξ0)? the so−called gauge−fixing function in QCD



The transverse relations

qρqσΠρσ(q;D) =
(ξ0 − ξ)

ξξ0
(q2)2

Πρσ(q;D) = Πq
ρσ(q) + Πg

ρσ(q;D) + δρσ∆
2
t (D)

qρqσ[Π
q
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(ξ0 − ξ)

ξξ0
(q2)2 − q2∆2

t (D)

By themselves they cannot remove the QD constants from the
theory, as well as to fix the function ξ = f (q2; ξ0)



The satisfied transverse relations
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The proper subtraction scheme
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2
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Independent tensor decomposition
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Dµν(q) = D0
µν(q) + D0

µρ(q)iΠρσ(q;D)Dσν(q)

Πρσ(q;D) = Πq
ρσ(q)+Πg

ρσ(q;D)+δρσ∆
2
t (D) = Tρσ(q)q
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µρ(q)iTρσ(q)q
2Π(q2;D)Dσν(q)

+D0
µρ(q)iδρσ∆

2
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THE GAUGE SYMMETRY IS BROKEN

The gluon SDE in the generalized gauge

Dµν(q) = D0
µν(q)+D0

µρ(q)iTρσ(q)
[
q2Π(q2;D) + ∆2

t (D)
]
Dσν(q)

D0
µρ(q)iLρσ(q)∆

2
t (D)Dσν(q)
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(
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∆2
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)
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ξ = f (q2; ξ0) =
ξ0q
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The QCD full gluon propagator

Dµν(q) =
iTµν(q)

q2 + q2Π(q2;D) + ∆2
t (D)

+ iLµν(q)
λ−1

q2 + λ−1∆2
t (D)

ξ0 = λ−1, d−1(q2;D) = [1 + Π(q2;D) + (∆2
t (D)/q2]

qµqνDµν(q) = iξ(q2;λ−1) = i
λ−1q2

q2 + λ−1∆2
t (D)

λ−1 = 0, λ−1 = 1. The formal λ−1 = ∞.

This system of the regularized equations constitutes that the
SU(3) colour gauge symmetry of the QCD Lagrangian is not a
symmetry of its ground state.



Why do we need the tadpole term ‘alive’?

A. Summation of the severe IR singularities
and suppression of the PT gluon states

Dµν(q) ∼ i
δµν
q2

−i
Tµν(q)

q2

[
Π(q2;D)+

∆2
t (D)

q2

]
−iLµν(q)

∆2
t (D)

(q2)2
+....,

Dµν(q) ∼ Tµν
∆2

t (D)

(q2)2

∞∑
k=0

(∆2
t (D)

q2

)k

Φk(g
2, λ̃...) + Oµν(1/q

2)

The confinement of the free gluons will be proven in the
presence of the tadpole term. This is a singular part of the
Laurent expansion but, in fact, this is a ‘cluster’ one.



B. The massive gluons (Minkowski signature)

Dµν(q) =
−iTµν(q)

q2 + q2Π(q2;D)−M2
− iLµν(q)

λ−1

q2 − λ−1M2

If the denominator may have a pole at q2 = M2
g , then

D0
µν(q;M

2
g ) =

−i

(q2 −M2
g )

[
gµν − (1− λ−1)

qµqν
(q2 − λ−1M2

g )

]
It is expressed in the Stueckelberg gauge. So this gauge is a
particular case of the generalized gauge derived above.



The self-consistency condition for the gauge choice

λ−1q2

q2 − λ−1M2
g

=
aq2

q2 − aM2
g

, a = finite number , λ−1 = a

λ−1q2

q2 − λ−1M2
g

= − q2

M2
g

, a = ∞, canonical gauge, no solution!

Mass-shell q2 = M2
g at any finite gauge

D0
µν(q;M

2
g ) =

−i

(q2 −M2
g )

[
gµν −

qµqν
M2

g

]
Mass-shell q2 = M2

g at the canonical gauge λ−1 = ∞
Since the canonical gauge is not self-consistent in QCD, there
is no mass-shell for the massive gluon fields within the
generalized gauge-fixing function approach.



C. ’Dimensional Transmutation’

In the presence of the mass squared scale parameter - the
tadpole term - the role of the QCD coupling constant g 2

becomes unimportant. This is also evidence of the
’dimensional transmutation’, g 2 → ∆2

t (D), which occurs
whenever a massless theory acquires mass dynamically. It is a
general feature of spontaneously symmetry breaking in field
theories.

We distinguish between the PT and full QCD by the explicit
presence of the tadpole term in the latter one, and not by the
magnitude of the coupling constant. In the both cases the
gluon fields remain strongly interacted, apart from the
asymptotic freedom (AF) regime.



D. The tadpole term and asymptotic freedom (AF)

Dµν(q) ∼ gµν
[ g 2

1 + g 2b0 ln(q2/Λ2
QCD)

]
(1/q2), q2 → ∞

Any mass to which can be assigned some physical meaning

M ∼ µ exp(−1/b0g
2), g 2 → 0

None a finite mass can survive in the PT weak coupling limit
or, equivalently, in the PT q2 → ∞ regime. So the question
where the finite mass comes from? cannot be answered by the
PT! It has to come from the IR region, controlled precisely by
the tadpole term. Its renormalized (finite) version should
somehow related to Λ2

QCD .



THE GAUGE SYMMETRY IS
UNBROKEN

∆2
t (D) = 0 → ξ = f (ξ0) = ξ0, → D −→ DPT

DPT
µν (q) = D0

µν(q) + D0
µρ(q)iTρσ(q)q

2Πs(q2;DPT )DPT
σν (q)

DPT
µν (q) = i

[
1

1 + Π(q2;DPT )
Tµν(q) + ξ0Lµν(q)

]
1

q2

This system of eqs. is free of all the types of the scale
parameters having the dimensions of mass squared, forbidden
by the exact gauge symmetry of the QCD Lagrangian.



Conclusions

a. The two satisfied transverse relations exist in QCD making
the theory renormalizable .
b. The subtraction scheme has been formulated, which makes
it possible to remove from theory the quadratically UV
divergent constants on the general basis.
c. The two different types of the gluon field configurations
with broken and unbroken gauge symmetries in the QCD
vacuum exist. The dynamical source of this effect is the
tadpole term.
d. The system of the relations which removes all the QD
constants apart from the tadpole term are exact mathematical
results, i.e., they are not prescriptions.
e. The NL dependence ξ on ξ0 in the generalized gauge in the
PT q2 → ∞ or, equivalently, formal ∆2

t (D) = 0 limits
becomes linear one ξ = ξ0.



Summary

In the QCD ground state exist such gluon field configurations
which break/violate the gauge symmetry of its Lagrangian,
but the PT renormalizability of the theory is not affected.
Existence of this effect includes establishing the true role of
the tadpole term in the QCD ground state. The gluon field
configurations with unbroken gauge symmetry are also exist.

To understand the phenomenon of the gauge symmetry
violation is a key to the explanation of the confinement phase
transition in QCD.

QCD is the self-consistent quantum field gauge theory. It does
not need some extra degrees of freedom in order to generate a
mass scale parameters.




